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Justification of Learning the Subject:

What is Discrete Mathematics?

Consider an analog clock (One with hands that continuously rotate and show time in continuous
fashion) and a digital clock (It shows time in discrete fashion). The former one gives the idea of
Continuous Mathematics whereas the later one gives the idea of Discrete Mathematics. Thus,
Continuous Mathematics deals with continuous functions, differential and integral calculus etc.
whereas discrete mathematics deals with mathematical topics in the sense that it analyzes data

whose values are separated (such as integers: Number line has gaps)

Example of continuous math — Given a fixed surface area, what are the dimensions of a cylinder

that maximizes volume?

Example of Discrete Math — Given a fixed set of characters, and a length, how many different

choose a team

Why do you learn Discrete Ma

This course provides some of the mathematical foundations and skills that you need in your
further study of Information Technology and Computer Science & Engineering. These topics
include: Logic, Counting Methods, Relation and Function, Recurrence Relation and Generating
Function, Introduction to Graph Theory And Group Theory, Lattice Theory and Boolean Algebra

etc.



Unit |

PROPOSITIONAL LOGIC AND COUNTING THEORY

OBJECTIVES:

After going through this unit, you will be able to :

" Define proposition & logical connectives.

" To use the laws of Logic.

" Describe the logical equivalence and implications.
" Define arguments & valid arguments.

" To study predicate and quantifier.

. _ Test the validity of argument using rules of logic.

. Study recurrence relation and generating function.

INTRODUCTION :

Mathematics is assumed to be an exact science. Every statement in Mathematics
must be precise. Also there can’t be Mathematics without proofs and each proof needs
proper reasoning.  Proper reasoning involves logic.  The dictionary meaning of
‘Logic’ is the science of reasoning. The rules of logic give precise meaning to
mathematical statements. These rules are used to distinguish between valid & invalid

mathematical arguments.

In addition to its importance in mathematical reasoning, logic has numerous
applications in computer science to verify the correctness of programs & to prove the
theorems in natural & physical sciences to draw conclusion from experiments, in

social sciences & in our daily lives to solve a multitude of problems.



The area of logic that deals with propositions is called the propositional calculus or
propositional logic. The mathematical approach to logic was first discussed by British
mathematician George Boole; hence the mathematical logic is also called as Boolean

logic.
In this chapter we will discuss a few basic ideas.

PROPOSITION (OR STATEMENT)

A proposition (or a statement) is a declarative sentence that is either true or
false, but not both.

A proposition (or a statement) is a declarative sentence which is either true or
false but not both.

Imperative, exclamatory, interrogative or open sentences are not statements in
logic.

Example 1 : For Example consider, the following sentences.
(i) VSSUT is at Burla.

+3=5 -
) n.rises in the east il
- _ ___,mrﬂ'"_rrr
. , - .
(V) a5 -

(vi) -
(vii) 5<4

(viii) The square of 5 i

(ix) X+3=2

(x) May God Bless you!

All of them are propositions except (iv), (v),(ix) & (x) sentences ( i), (ii) are true,
whereas (iii),(iv), (vii) & (viii) are false.

Sentence (iv) is command, hence not a proposition. (Vv)is a question so not a
statement. (ix) is a declarative sentence but not a statement, since it is true or
false depending on the value of x. (x) is a exclamatory sentence and so it is not
a statement.

Mathematical identities are considered to be statements. Statements which are
imperative, exclamatory, interrogative or open are not statements in logic.



Compound statements:

Many propositions are composites that are, composed of sub propositions and
various connectives discussed subsequently. Such composite propositions are
called compound propositions.

A proposition is said to be primitive if it cannot be broken down into simpler
propositions, that is, if it is not composite.

Example 2 : Consider, for example following sentences.
a. “The sun is shining today and it is colder than
yesterday”
b. “Sita is intelligent and she studies every night.”

Also the propositions in Example 1 are primitive propositions.
LOGICALOPERATIONS OR LOGICAL CONNECTIVES :

The phrases or words which combine simple statements are called logical
connectives. There are five types of connectives. Namely, ‘not’, ‘and’, ‘or’,
‘if...then’, iff etc. The first one Is a unitary operator whereas the other four are
binary operators. .

In the followi able we list some possible connectives, their symbols &
the nature of t ound statement formed by them.

Sr. No. ol - Compound statement
1 AN Conjunction
2 OR Disjunction
3 NOT Negation
4 If....then - Conditional or
implication
5 If and only if (iff) < Biconditional

Now we shall study each of basic logical connectives in details.

Basic Logical Connectives:

Conjunction (AND):

If two statements are combined by the word “and” to form a compound
proposition (statement) then the resulting proposition is called the conjunction of

two propositions.

Symbolically, if P & Q are two simple statements, then ‘P A Q’ denotes the
conjunction of P and Q and is read as ‘P and Q.



Since, P A Q is a proposition it has a truth value and this truth value
depends only on the truth values of P and Q.

Specifically, if P & Q are true then P AQ is true; otherwise P AQ is
false.

The truth table for conjunction is as follows.

P Q PAQ
T T T
T F F
F T F
F F F

Example 3:

Let P: In this year monsoon is very good.

Q: The rivers are flooded.
gar monsoon is very good W flooded.
___..r“"

Symbolically, if P and Q are two si . s, then P v Q denotes
the disjunction of P and Q and read as 'P or Q".

Then, P

Disjunction (Q

Any two statements

compound statement called

The truth value of P v Q depends only on the truth values of P and Q.
Specifically if P and Q are false then PvQis false, otherwise P v Q is true.

The truth table for disjunction is as follows.

P Q PvQ
T T T
T F T
F T T
F F F




Example 4:

P: Paris is in France

Q 2+3=6

then Pv Q: Paris is in France or 2 + 3 =6.
Here, Pv Q is true since P is true & Q is False.

Thus, the disjunction P v Q is false only when P and Q are both false.
Negation (NOT)

Given any proposition P, another proposition, called negation of P, can be
formed by modifying it by “not”. Also by using the phrase “It is not the case that

or” “Itis false that” before P we will able to find the negation.

Symbolically, — P Read as “not P” denotes the negation of P. the truth value of —P

depends on the truth value of P

If P is true the and if P is false then — P is true. The truth-

Example 5:

Let P: 3 is a factor of 12.
Then Q = —P: 3 is not a factor of 12.
Here P is true & — P is false.

Conditional or Implication: (If...then)

If two statements are combined by using the logical connective
‘if...then’ then the resulting statement is called a conditional statement.



If P and Q are two statements forming the implication “if P then
Q” then we denotes this implication P — Q.

In the implication P — Q,

P is called antecedent or hypothesis
Q is called consequent or conclusion.

The statement P — Q is true in all cases except when P is true and Q is
false.

The truth table for implication is as follows.

P Q P—-Q
T T T
T F F
F T T
F F L

Since conditional statement play an essential role in mathematical
iety of terminology is used to express P — Q.

i)

iii)

iv)

v)  Pissufficient
vi) QwhenP

vii) Q is necessary for P
viii) Q follows from P
ix) ifP,Q

X)  Qunless —P

Converse, Inverse and Contra positive of a conditional statement :

We can form some new conditional statements starting with a conditional
statement P —Q that occur so often. Namely converse, inverse, contra positive.
Which are as follows:

1. Converse: If P—Q is an implication then Q — P is called the
converse of P - Q.

2. Contra positive : If P—Q is an implication then the implication
—Q — —P iscalled it’s contra positive.



3. Inverse: If P— Q is an implication then —P — —Q is called its
inverse.

Example 6:

Let P: You are good in Mathematics.
Q: You are good in Logic.

Then, P — Q: If you are good in Mathematics then you are good in Logic.

1) Converse: (Q —P)
If you are good in Logic then you are good in Mathematics.

2) Contra positive: —Q — —P
If you are not good in Logic then you are not good in Mathematics.

3) Inverse: (-P— —Q)
If you are not good in Mathematics then you are not good in Logic.

Biconditional Statement: LetP and Q be propositions.The
biconditional statement P <> Q is the proposition “P if and only if Q".

The bice nal statement is true when P and Q have same truth values
and is -

™ o

s are also called b_i_-jmpli'(-:ations. It is also
condition for Q.

read as PiS|
The truth table fal statement is as follows.

P Q

T T T
T F F
F T F
F F T

Example 7 : Let P : Ram can take the flight.
Q : Ram buy a ticket.
Then P <> Q is the statement.

“Ram can take the flight iff Ram buy a ticket”.

Precedence of Logical Operators:

We can construct compound propositions wusing the
negation operator and the logical operators defined so far. We will
generally use parentheses to specify the order in which logical operators in a
compound proposition are to be applied. In order to avoid an excessive number

of parentheses.



We sometimes adopt an order of precedence for the logical connectives. The

following table displays the precedence levels of the logical operators.

Operator Precedence
B 1
A 2
A 3
- 4
© 5

LOGICAL EQUIVALANCE:

Compound propositions that have the same truth values in all possible

cases are called logically equivalent.

Definition: The
equivalent if F utology. The notation P = Q denotes that P and Q

pound propositions P and Q are said to be logically

are logically

- =

Some equivalence state educing other equiveil_encéjétatements.

Juivalence. "

o

The following table shows some

Logical Identities or Laws of Logic:

Name Equivalence

1. Identity Laws PAT=P
PVvF=P

2. Domination Laws PvT=T
PAF=F

3. Double Negation —(=P)=P

4. ldempotent Laws PvP=P
PAP=P

5. Commutative Laws PvQ=QvVvP
PAQ=QAP

6. Associative Laws (PvQ)vR=Pv(QVR)
(PAQ)AR=PA(QAR)




7. Distributive Laws Pv(QAR)=(PvQ)A(PVR)
PA(QVR)=(PAQ)Vv(PAR)

8. De Morgan’s Laws _|(p,\Q) =—Pv —=Q
—~(PvQ)==PA —Q

9. Absorption Laws Pv(PAQ)=P
PA(PvQ)=P

10. Negation Laws Pv—-P=T

(Inverse / Complement) PA—-P=F

11. Equivalence Law P-Q=(P>Q)A(Q—P)

12. Implication Law P>Q=—-PvQ

13. Biconditional Property P-Q=(PAQ)v(=PA =Q)

14. Contra positive o f P>Q=-Q— —P

Conditional statement

Note that while egation of compound statement ‘every’ or

‘All” is interc % ‘there exists’ is interchanged by ‘at least one’ &

vice versa.

Example 8: If P: T
Q: “This book is costly.”
Write the following statements |
a) This book is good & costly.
b) This book is not good but costly.

c) This book is cheap but good.

d) This book is neither good nor costly.
e) If this book is good then it is costly.

Answers:
a) PAQ
b) —PAQ
c) —-QAaP
d) —PA —=Q
e) P->Q
Logical Equivalence Involving Implications :

Let P & Q be two statements.

The following table displays some useful equivalences for implications

involving conditional and biconditional statements.



w
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Logical Equivalence involving implications
P>Q=-PvQ

P>Q=-Q—>—P

PvQ=-P—>Q

PAQ=—(P>-Q)
~(P>Q)=PA-Q
(P>Q)A(P—>r)=P—>(QAr)
(P>r)A(Q—r)=(PvQ)—r
(P> Q)v(P—>r)=P—>(Qvr)
(P>r)v(Q-r)=(PAQ)r
P&>Q=(P->Q)A(Q—>P)
P&>Q=-P&—-Q

P~ Q=(PAQ)v(-PA=0Q)
- (P Q)=P - —=Q
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All these identitiessean be proved by using truth tables.

NORMAL FORM AND TRUTH TABLES :

Well ordered Formulas:
A compound statement™obtained from statement letters by using one or more

connectives is called a stateméh‘t-pgttern or statement form.thus, if P, Q, R, ...
are the statements (which can bé“'treated.-as variables) then any statement
involving these statements and the logical connectives — A,v,—, <> is a

statement form or a well ordered formula or statement pattern.



Definition: A propositional variable is a symbol representing any proposition.
Note that a propositional variable is not a proposition but can be replaced by a
proposition.

Any statement involving propositional variable and logical connectives is a well
formed formula.

Note: A wof is not a proposition but we substitute the proposition in place of
propositional variable, we get a proposition.

Eg —|(P\/Q)/\(—|Q/\R)—)Q,—|(P—)Q) etc.

Truth table for a Well Formed Formula:

If we replace the propositional variables in a formula o by propositions, we get a
proposition involving connectives. If o involves n propositional constants, we get

2n possible combination of truth variables of proposition replacing the variables.

Example 9: Obtain truth value for o.=(P = Q)A(Q — P).

Solution: The able for the given well formed formula is given below.
QP ___--"_- o
T Ty
- X ; -IE
Ea®| F
s T

Tautology:

A tautology or universally true formula is a well formed formula, whose truth
value is T for all possible assignments of truth values to the propositional

variables.

Example 10 : Consider Pv —P, the truth table is as follows.

P ~P Pv—P
T F T
F T T

P v —P always takes value T for all possible truth value of P, it is a
tautology.



Contradiction or fallacy:

A contradiction or (absurdity) is a well formed formula whose truth value is
false (F) for all possible assignments of truth values to the propositional
variables.

Thus, in short a compound statement that is always false is a contradiction.

Example 11 : Consider the truth table for PA—P.

P —P PA—P
T F F
F T F

-.P A—P always takes value F for all possible truth values of P, it is a
Contradiction.

Contingency:

A well formed formula which is neither a tautology nor acontradiction is
called a continge

Thus, continge ate 3 which is either tru_q_sr‘f'a'lse depending
on the truth valt ) fatement. _—

Example 12: Show ta‘ g are logically eqyﬂ_i_vaie"ﬁjtj
Solution : The truth tables for omuad'"ﬁ-roposition is as follows.
1 2 3 4 5 6 7 8
T T F F T F F T
T F F T T F F T
F T T F T F F T
F F T T F T T T

We can observe that the truth values of —(pv q)and —p A —q agree for all possible
combinations of the truth values of p and g.



It follows that —(pv q) <> (—pA—Q) is a tautology; therefore the
given compound propositions are logically equivalent.

Example 13: Show that p—q and —pv q are logically equivalent.

Solution : The truth tables for these compound proposition as follows.

p q —p | -PVvqQ | PpP—>(Q
T T F T T
T F F F F
F T T T T
F F T T T

As the truth values of p— q and —pv q are logically equivalent.

Example 14 : Determine whether each of the following form is a
tautology or a contradiction or neither :

i) (P/\Q)—)(PVQ)
i) (PVQ)/\(—|P/\—|Q)

Solution: -
i) The truth table for

P q (prg)—(pva)
T T T T T
T F F T T
F T F T T
F F F F T

Here all the entries in the last column are ‘T°.
- (p~qg)—>(pvQq) is a tautology.



ii) The truth table for (pvg)A(—pA—q) is

1 (2] 3 4 | s 6

p | g |pva] —p | -0 |-Par-q|3n6
T| T | T F | F F F
T|F | T | F | T F F
S I O A F F
FIFr|l F ] T T T F

The entries in the last column are ‘F’. Hence (pvq)A(—pA—0g) isa

contradiction.

iii) The truth table is as follows.

T F F T T
T = T F T -
F T T
F R T
Here all entries ir 4 .- il
o (=pA=0)—>(p—>q boyas _
iv) The truth table is as follows.
T T F F T F
T|F| T T F F
FlT| F F T F
FIF| T F T F

All the entries in the last column are ‘F’. Hence it is contradiction.




V) The truth table for [p A(Pp—>—0)—> QJ

Pl a| 0P8 pa(p—>-0) [pA(p—>—0)—>q]
T|lT] F F F T
T F T T T F
FlT|F T F T
FlLFr| T T F T

The last entries are neither all T’ nor all ‘F’.

[pA(p—>ﬁq)—>q] is a neither tautology nor contradiction. It is a

Contingency.

PREDICAT

D QUANTIFIERS

Predicates: from universe of discg_w:se"ff)_truth values.

Consider a sentenes : is reg:ne.r'fﬁjéﬁ 2 is the predicate and x

is the subject or variable.”

If values are assigned to all the varrabile “the resulting sentence is a proposition.
e.0.1. x< 9 isa predicate
2. 4<9isa proposition

Propositional Function:

A propositional function (or an open sentence) defined on A is a predicate
together with subjects. It is denoted by the expression P(x) which has the

property that P(a) is true or false for each a € A.

The set A is called domain of P(x) and the set Tp of all elements of A for which P (a)

is true is called the truth set of P(x).
Propositional functions can be converted to proposition by two aspects
(i) By assigning exact value to the variable and (ii) using quantification.
e.g. Let A= {x/xis an integer < 8}
Here P(x) is the sentence “x is an integer less than 8”.

The common property is “an integer less than 8”.
. P(1) is the statement “1 is an integer less than 8”.
- P(1) is true.



Quantifiers:

Quantification is the way by which a Propositional function can be turns out to
be a proposition. The expressions ‘for all’ and ‘there exists’ are called
quantifiers. The process of applying quantifier to a variable is called

quantification of variables.

Universal quantification:

The universal quantification of a predicate P(x) is the statement, “For all values
of x, P(X) is true.”

The universal quantification of P(x) is denoted by ¥ for all x P(x).

The symbol ¥ is called the universal quantifier.
e.g.

1) The sentence P(X) : - (-x) = X is a predicate that makes sense for real

numbers x. The universal quantification of P(x), =¥ x P(x) is a true

for all real numbers, -(- x) = x.

_
-

_.-n-"f

=

2) Let : X +2 <5 is a false statement, as

Q(5) is not true. ion can a'i‘_’__?ﬁﬁm'd in English as

“for every x”, “every x”, 0 Pﬁ_____.-—
Existential quantification -
The existential quantification of a predicate P(x) is the statement
“There exists a value of x for which P(x) is true.”
Theexistential quantification of P(x)is denoted IxP(x). The

symbol 3 is called the existential quantifier. e.g.

1) Let Q:x+1<4. The existential quantification of Q(x),3xQ(x)
IS a true statement, because Q(2) is true statement.
2) The statement 3y, y+2 =y s false. There is no value of y for
which the propositional function y+2 =y produces a true statement.
Negation of Quantified statement :

=3 Xp(x)= ¥ X = p(X)
and —vxp(X)= 3 x—=p(x)



This is true for any proposition p(x).
For example, The negation of all men are mortal is: There is a man who is not mortal.

Example 15 :
Express the statement using quantifiers: “Every student in your school has a

computer or has a friend who has a computer.”

Solution :

Let c(x) : “x has a computer”
F(x,y) : “x and y are friends”

Thus, We have
¥x(c(x) v 3y(e(y) A F(x,y))

THEORY OF INFERENCE FOR THE PREDICAT CALCULAS

If an implication P = Qs a tautology where P and Q may be compound statements

involving any number of propositional variables we say that Q logically follows

from P. Suppose P(Py, P2 ....... Pn) — Q. Then this implication is true regardless of the

truth values @ onents. In  this case, wq;,sa?;that Q logically

follows from

=

Proofs in matheméit:‘s : 1 at Establish the truth ofathematical
statements.
To deduce new statements from state e already have, we use rules of
inference  which are templates_ for constructing  valid
arguments. Rules of inference are our basic tools for establishing the truth of
statements. The rules of inference for statements involving existential and
universal quantifiers play an important role in proofs in Computer Science and

Mathematics, although they are often used without being explicitly mentioned.
Valid Argument:

An argument in propositional logic is a sequence of propositions. All propositions
in the argument are called hypothesis or Premises.The final proposition is called

the conclusion. An argument form in propositional logic is a sequence of

compound propositions - involving propositional variables.
An argument form is valid if no matter which particular propositions are

substituted for the propositional variables in its premises, the conclusion is true if

the premises are all true.



Thus we say the conclusion C can be drawn from a given set of premises or the
argument is valid if the conjunction of all the premises implies the conclusion is

a tautology.

Rules of Inference for Propositional logic

We can always use a truth table to show that an argument form is valid. Arguments
based on tautologies represent universally correct method
of reasoning. Their validity depends only on the form of statements
involved and not on the truth values of the variables they contain such

arguments are called rules of inference.

These rules of inference can be used as building blocks to construct more
complicated valid argument forms

e.g.
Let  P:“You have a current password”
Q: “You can log onto the network”.

Then, the argum
“If you have

ing the propositions,
ord, then you can log onto the ork”.

“You have a cU

ou can__Lag onto the network™ has
the form ... i 4

Where .. is the symbol that denotes ‘therefore we know that when P & Q are proposition
variables, the statement (P — Q) AP)—Q is a tautology

So, this is valid argument and hence is a rule of inference, called modus ponens or the
law of detachment.

(Modus ponens is Latin for mode that affirms)
The most important rules of inference for propositional logic are as follows.....



Rule of Inference | Tautology Name
I (PN(P—Q))—0 Modus ponens
P—Q
;0
2)| -0 [ﬁ ONP—Q0)—-P Modus tollens
P—Q
R o
3)| P—O [(p —O)N (0 — R)] — (P — | Hypothetical
O—R syllogism
.P—R
4| PVO (PVO)A=P]—=Q Disjunctive
P syllogism
.0
5) P P— (PVO) Addition
- PVO
6) | PNO (PNQ)— P Simplification
P
1P (PYN(Q))— PNO Conjunction
_9
. ' . P .*"\'\ Q_)
8) | PvO (PVO)A(=PVR)|—(0VA Resolution
— P \Y) R
SLOVR
Examplel6:

Test the validity of the following arguments :

1. If milk is black then every crow is white.

2. If every crow is white then it has 4 legs.

3. Ifevery crow has 4 legs then every Buffalo is white and brisk.
4. The milk is black.
5

So, every Buffalo is white.



Solution :

Let P :The milkis black
Q : Every crow is white
R : Every crow has four legs.
S : Every Buffalo is white
T : Every Buffalo is brisk
The given premises are

@ P-Q
i) QR
(i) R— SAT
(iv) P
The conclusion is S. The following steps checks the validity of argument.
1. P—>Q premise (1)
2 Premise (2)
3 line 1. and 2. Hypothetical syllogism (H.S.)
4 Premise. (iii) '
5.
6
7
8 Line 7, simplification
The argument is valid
Examplel? :

Consider the following argument and determine whether it is valid or not. Either | will
get good marks or | will not graduate. If I did not graduate | will go to USA. | get
good marks. Thus, I would not go to USA.

Solution :
Let P 1will get good marks.

Q : I'will graduate.
R : Iwill goto USA

The given premises are
i) PV-Q

i) -Q—-R

i) P

The conclusion is — R.



What are proofs?

A proof is a clear explanation, accepted by the mathematical community, of why
something is true.
Ancient Babylonian and Egyptian mathematics had no proofs, just examples and methods.

Proofs in the way we use them today began with the Greeks and Euclid

Methods of Proof:

There are different methods of proof as follows:
Direct method

Indirect method.

Contradiction method.

Vacuous method.

YV V V V V

Method of induction etc

Already you have the idea about above mentioned methods. Let us discuss

_’_-[-

The following result shows how this can be done.

Suppose that
@ P(no) is true and
(b) If P(K) is true for some K > ng, then P(K + 1) must also be

true. The P(n) is true for all n > nQ.

This result is called the principle of Mathematical induction.

Thus to prove the truth of statement WV n>ng. P(n), using the
principle of mathematical induction, we must begin by proving directly that
the first proposition P(nQ) is true. This is called the basis step of the induction
and is generally very easy.

Then we must prove that P(K) = P(K + 1) is a tautology for any choice

of K > nQ. Since, the only case where an implication is false is if the antecedent



is true and the consequent is false; this step is usually done by showing that if
P(K) were true, then P(K + 1) would also have to be true. This step is called
induction step.
In short we solve by following steps.

1. Show that P(1) is true.

2. Assume P(k) is true.

3. Prove that P(k +1) is true using

P(k) Hence P(n) is true for every n.

Example 18 :
Using principle of mathematical induction prove that

i) 1+2+3+..+n=n(n+1)/2

(i) 1°+22+3%+..+n’=n(n+1)(2n+1)/6

(i) 1°+2°+3%+ . +n®=n?(n+1)?/4

(iv) 3">n’forn=1,n=2

(v) 3" >n?for n apositive integer greater than 2.

(vi) For any positive integer number n, n® + 2 n is divisible by 3

Solution (i)

Let the statement
142+3+..+n=n(n+
STEP 1: We first show that p (1) is true. 7

Left Side=1

Right Side=1(1+1)/2=1

Both sides of the statement are equal hence p (1) is true.
STEP 2: We now assume that p (K) is true
1+2+3+..+k=k(k+1)/2

and show that p (k + 1) is true by adding k + 1 to both sides of the above
statement

1+2+3+..+k+(k+1)=kk+1)/2+(K+1)
=(k+1)k/2+1)

=(k+1)(k+2)/2



The last statement may be written as
1+2+3+..+k+(k+1)=(+1)(k+2)/2
Which is the statement p(k + 1).

Hence , by method of induction P(n) is true for all n.

Solution (ii)

Statement P (n) is defined by
1242%2+3%+ .. +n?=n(n+1)(2n+ 1)/ 2
STEP 1: We first show that p (1) is true.

Left Side=1°=1

Right Side=1(1+1)(2*1+1)/6=1

Both sides of the statement are equal hence p (1) is true.

STEP 2: We i 2 that p (K) is true
12+22

and show that p
statement

12+22+3%+ . +k?+ (K (2k+1)/6+(k+1)2
Set common denominator and factor k + 1 on the right side
=(kk+1)[k@k+1)+6(k+1)]/6

Expand k (2k + 1)+ 6 (k + 1)

=(k+1)[2k*>+7k+6]/6

Now factor 2k ? + 7k + 6.

=(kk+1)[(k+2)(2k+3)]/6

We have started from the statement P(k) and have shown that
12422432+ . +k?+(k+1)%=(k+1)[(k+2) (2k+3)]/6
Which is the statement P(k + 1).

Hence , by method of induction P(n) is true for all n.



Solution (iii)
Statement P (n) is defined by
13+23+3%+ . +n®=n?(n+1)%/4
STEP 1: We first show that p (1) is true.
Left Side=1°=1
Right Side=12(1+1)%/4=1
hence p (1) is true.
STEP 2: We now assume that p (K) is true
13+2%+3%+  +k3=k?(k+1)%/4
add (k + 1) ® to both sides
13+23+3%+ 4+ k3+ (k+1)°=k?(k+1)?/4+(k+1)3

factor

:(k+

set to commo
=(k+1)2[k®+4k+4]
=(k+1)*[(k+2)]/4
We have started from the statement P(k) and have shown that
13423433+ +K3+(k+1)°3=(k+1)?[(k+2)%]/4
Which is the statement P(k + 1).

Hence , by method of induction P(n) is true for all n.

Solution (iv)

Statement P (n) is defined by
n*+ 2 nis divisible by 3
STEP 1: We first show that p (1) is true. Let n = 1 and calculate n® + 2n

1°+2(1)=3



3 is divisible by 3

hence p (1) is true.

STEP 2: We now assume that p (k) is true
k*+ 2 kis divisible by 3

is equivalent to

k®*+2k=3M, where M is a positive integer.

We now consider the algebraic expression (k + 1) * + 2 (k + 1); expand it and group like
terms

(k+1)>+2(k+1)=k>+3k?>+5k+3
=[k*+2k]+[3k?+3k+3]
=3M+3[k’+k+1]=3[M+k>+k+1]

2 (k + 1) is also divisible by 3 and therefore statement P(k + 1) is true.

tion P(n) is true for all n.

Solution (v)

Statement P (n) is de
3 n > n 2

STEP 1: We first show that p (1) is true. Let n = 1 and calculate 3* and 12 and
compare them

3 is greater than 1 and hence p (1) is true.
Let us also show that P(2) is true.

3%=9

2%=4

Hence P(2) is also true.

STEP 2: We now assume that p (K) is true

3k>k2



Multiply both sides of the above inequality by 3
3*3K>3*k?

The left side is equal to 3%**. For k >, 2, we can write
k*>2kandk®>1

We now combine the above inequalities by adding the left hand sides and the
right hand sides of the two inequalities

2k?>2k+1

We now add k ? to both sides of the above inequality to obtain the inequality
3k?>k*+2k+1

Factor the right side we can write

3*k?>(k+1)2

If3*3K>

*k?and 3 * k? > (k+1) 2"

Which proves that P(k + 1)
Hence , by method of induction P(n) is true for all n.

Solution (vi)

Statement P (n) is defined by
ni>2"

STEP 1: We first show that p (4) is true. Let n = 4 and calculate 4 ! and 2" and compare
them

41=24

2*=16

24 is greater than 16 and hence p (4) is true.
STEP 2: We now assume that p (k) is true

Kl >2K



Multiply both sides of the above inequality by k + 1

k! (k +1)> 2% (k + 1)

The left side is equal to (k + 1)!. For k >, 4, we can write
k+1>2

Multiply both sides of the above inequality by 2 * to obtain
2K (k+1)>2* 2k

The above inequality may be written

2k(k+ 1) > pk+1

We have proved that (k + 1)! > 2% (k + 1) and 2 (k + 1) > 2*** we can now
write

(k+ 1)1 > 2K+t

We have assumed that statement P(k) is true and proved that statement P(k+1) is

ion P(n) is true for all n.




COUNTING:
Broadly speaking combinatory(counting) is the branch of mathematics dealing

with order and patterns without regard to the intrinsic properties of the objects under

consideration.

FUNDAMENTAL PRINCIPLE COUNTING (FPC):
The two main counting rules: The Multiplication Rule states that if one can do a

job by doing two tasks one after the other, and there are ‘m’ ways to do the first task and
then ‘n” ways to do the second, then there are ‘mn’ ways to do the whole job.

For Example, suppose there are 3 routes from Burla to Sambalpur and 4 routes from
Sambalpur to Cuttack, then by FPC the total number of ways for performing journey
from Burla to Cuttack is 12.

The Addition Rule, states that if one can do a job by doing one or the other (but not
both) of two tasks, and there are m ways to do then first task and n ways to do the
second, then there are m+n ways to do the whole job.

PERMUTATIC OMBINATIONS: _—

Permutation i objects with orderingl_wh'éFeas combination is the

selection of obj'e S
Permutation Formula:
Q) The permutation of n — thing
P(n,r)=n!/(n-r)!
n = the total number of items you have from which to take
r = the number you are actually going to use.

(i) The permutation of n — things taken r at a time with repetition is
P(n,r=n'

(ili)  The permutation of n — things taken all at a time with repetition is
P(n,n) =n!

Factorial Rule: For n items, there are n! (pronounced n factorial) ways to arrange them.

nt=(n)(n-1)(n-2)...3)(2)1)
For example:
31=(3)(2)(1) =6
41=(4)(3)(2)(1) =24
5!=(5)(#)(3)(2)(1) =120



6! = (6)(5)(4)(3)(2)(1) =720
Note: 0!=1

Example 2:

Let’s say you have four friends, but only need to text three of them when order matters.

Find the number of ways to text your friends.

Solution:

There are 24 ways to test three out of your four friends if order matters.

Combination Formula:

The permutation of n - things taken r at a time is:

1
C(n,r)= r!{r::-r)!

Example 3:

The art club has 4 members. They want to choose a group of three to compete in a

regional competition. How many ways can three members be chosen?

Solution:

__ 4 _ 24 _
CEI=30a3n "6 4

There are 4 ways to chose 3 people for the competition when order is not important



The pigeonhole principle (PHP):

The general rule states when there are k pigeonholes and there are k+1 pigeons, then
they will be 1 pigeonhole with at least 2 pigeons. A more advanced version of the
principle will be the following: If mn + 1 pigeons are placed in n pigeonholes, then there

will be at least one pigeonhole with m + 1 or more pigeons in it.

For Example, 13 people are involved in a survey to determine the month of
their birthday. As we all know, there are 12 months in a year, thus, even if the first 12
people have their birthday from the month of January to the month of December, the
13™ person has to have his birthday in any of the month of January to December as well.
Thus, by PHP we are right to say that there are at least 2 people who have their birthday

falling in the same month.

In fact, we can view the problem as there are 12 pigeonholes (months of the
year) with 13 pi

le 13 persons). Of course, by the Pigeonhole Principle, there

will be at leas

PRINCIPLE ORI

The Principle of Inclt on allows us to find'the cardinality of a

union of sets by knowing the carding the individual sets and all possible
intersections of them. -
The basic version of the Principle of Inclusion and Exclusion is that for two finite sets A

and B, is

|AUB|=|A|+|B|-/ANB|.
The result generalizes to three finite sets (in fact it generalizes to any finite number of
finite sets):

|AUBUC|=]A[+[BJ+|C|-/ANBI-ANC|-[BNC|+|ANBNC]|

Example :

In a room of 50 people whose dresses have either red or white color, 30 are wearing red dress,
16 are wearing a combination of red and white. How many are wearing dresses that have only

white color?



Solution

Number of people wearing a red dress = 30

i.e, n(R)=30

Number of people wearing a combination of red and white = 16

e, n(RNW)=16

The total number of people in the room = number of people who are wearing dresses
that have either red or white colour =n (R ~ W) = 50.

We know,

n(R Y W)=n(R)+nW)-nR " W)

50 = 30 + n(W) - 16

50 - 14 = n(W) - 16

n(W) = 36

i.e., the number of people who are wearing a white dress = 36.

Therefore, number of people who are wearing white dress only = n(W) - n(R ™ W) =

36-16=20 |

Example :
How many members 0

with 105?

actors in common

Solution

105=3.5. 7, s0 a number shares factors with 105 if and only if it is divisible by 3, 5,
or 7.

Let A, B, and C be the members of {1,2,3, .............. , 105} divisible by 3, 5, and 7
respectively.

Clearly |A| = 35, |B| = 21, and |C| = 15. Furthermore, A NB consists of those numbers
divisible by both and 5, i.e., divisible by 15. Likewise, A N C and B N C contain
multiples of 21 and 35

respectively, so |[A N B|=7,|A NC| =5, and |B N C|= 3. Finally, A N BN C consists

only of the number 105, so it has 1 member total. Thus,

JAUBUC|=35+21+15-7-5-3+1=57



Example:

At Sunnydale High School there are 28 students in algebra class,30 students in biology
class, and 8 students in both classes. How many students are in either algebra or biology

class?
Solution:

Let A denote the set of students in algebra class and B denote the set of students in
biology class. To find the number of students in either class, we first add up the students

in each class:

|A| + |B
However, this counts the students in both classes twice. Thus we have to subtract them
once:|A N B

This shows

IAUB|=28 +
so there are 50 students in at least one of tt

Example:

At Sunnydale High School there are 55 students in either algebra, biology, or chemistry
class 28 students in algebra class, 30 students in biology class, 24 students in chemistry
class, 8 students in both algebra and biology, 16 students in both biology and chemistry,
5 students in both algebra and chemistry. How many students are in all three classes?

Solution:

Let A, B, C denote the set of students in algebra, biology, and chemistry class,

Respectively. Then A U BU C is the set of students in one of the three classes, ANB is
the set of students in both algebra and biology, and so forth. To count the number of
Students in all three classes, i.e. count | A U BU C |, we can first add all the number of

students in all three classes:



|Al + |BI+[C]|
However, now we've counted the students in two classes too many times. So we subtract
out the students who are in each pair of classes:

-ANBI-ANCH-BNC|
For students who are in two classes, we've counted them twice, then subtracted them
once, so they're counted once. But for students in all three classes, we counted them 3
times, then subtracted them 3 times. Thus we need to add them again:| ANBNC]
Thus
| AU BU C |=|A| + |BJ+|C| -|]A N B|-|A N.CJ-B N CHANBNC]

55=28+30+24-8-16-5+|ANBNC|

Thus |JANBN here are 2 students in all three classes. -

e
RECURRENG
We are familiar™w
such as principles for éd ion, permutati_gme,"{c;mbinations etc.
But there are some problems whict ot be sg.l-véﬁi-o-—r very tedious to solve,
using these techniques. In some such problems, the problems can be
represented in the form of some relation and can be solved accordingly.
We shall discuss some such examples before proceeding further.

The expression of higher terms in terms of combination of lower terms is
known as recurrence relation

Example: The number of bacteria, double every hour, then what will be the
population of the bacteria after 10 hours? Here we can represent number of

bacteria at the nth

hour be an. Then, we can say that an = 2an—1.

Example: Consider the Fibonacci sequence
1,1,2,3,5,8, 13....

The recurrence relation is given by:

an =an—l—i_a'n—Z’a'O =a1 =1



Example : Towers of Hanoi is a popular puzzle. There are three pegs mounted
on a board, together with disks of different sizes. Initially, these discs are placed
on the first peg in order of different sizes, with the largest disc at the bottom and
the smallest at the top. The task is to move the discs from the first peg to the
third peg using the middle peg as auxiliary. The rules of the puzzle are:

e Only one disc can be moved at a time.

e No disc can be placed on the top of a smaller disc.
This is a popular puzzle and we shall discuss its solution, using the one of the
techniques discussed in this chapter.
With these illustrations, we define recurrence relation now.

Definition: A recurrence relation for the sequence {an} is an

equation, that expresses an in terms of one or more of the previous terms of
the sequence, namely, aQ, ai, .., an-1, for all integers n with n > np,

where nQ is a nonnegative integer.

=~ "m

Example : an n_if,’Withfao =0.5.

Example : an's
The term aQ, given 7es, specify initialscondition to

solve the recurrence relation ¢

FORMULATION OF RECURRENCE RELATION:

Before we proceed with discussing various methods of solving recurrence
relation, we shall formulate some recurrence relation. The first example of

formulation that we discuss is the problem of Tower of Hanoi as above.

Example: With reference to above Example, let Hp denote the number of
moves required to solve the puzzle with n discs. Let us define Hp

recursively.

Solution: Clearly, H; = 1.
Consider top (n—1) discs. We can move these discs to the middle peg using

Hn: moves. The n™ disc on the first peg can then moved to the third peg. Finally,
(n-1) discs from the middle peg can be moved to the third peg with first peg
as auxiliary in H,; moves. Thus, total number of moves needed to move n

discs are: H,, = 2H,.1 + 1. Hence the recurrence relation for the Tower of Hanoi is:



Hp=1 ifn=1

H,=2H,1+1 otherwise.

Example: Find recurrence relation and initial condition for the number of bit

strings of length n that do not have two consecutive 0s.

Solution: Let ap denote the number of bit strings of length n that do not
contain two consecutive 0s. Number of bit strings of length one
that follow the necessary rule are: string 0 and string 1. Thus, ajl
= 2. The number of bit strings of length 2 is: string 01, 10 and 11.
Thus, a2 = 3. Now we shall consider the case n > 3. The bit strings
of length n that do not have two consecutive Os are precisely those
strings length n—1 with no consecutive Os along with a 1 added 1 at

the end of it (which isap—1 In number) and bit strings of length n-2

with no_consecutive Os with a 10 added at the end of it (which is

METHODS OF SOL\ E RELATION -

Now, in this section we shall disc methods_ofisolving recurrence relation

and hence solve the relations that we have formlated in the previous section.

Backtracking Method:

This is the most intuitive way of solving a recurrence relation. In this method,

we substitute for every term in the sequence in the form of previous term (i.e. a,
in the form of a, 1, a5 1 in the form of a, , and so on) till we reach the initial
condition and then substitute for the initial condition. To understand this

better, we shall solve the recurrence relations that we have come across earlier.

Example: Solve the recurrence relation a, = 1.06a,_4, with a; = 0.5.

Solution: Given recurrence relation is a, = 1.06a,_;, with ag = 0.5. From this

equation, we have a, = 1.06a,; = 1.06x1.06 a,, = 1.06x1.06x1.06

an-3 Proceeding this way, we have a, = (1.06)"ao. But, we know that a,

0.5.Thus, explicit solution to the given recurrence relation is a,

0.5x(1.06)"for n > 0.



Method for solving linear homogeneous recurrence relations with constant
coefficients:

In the previous subsection, we have seen a backtracking
method for solving recurrence relation. However, not all the
equations can be solved easily using this method. In this subsection, we
shall discuss the method of solving a type of recurrence relation called
linear homogeneous recurrence relation. Before that we shall define this

class of recurrence relation.

Definition : A linear homogeneous recurrence relation of degree k with constant

coefficients is a recurrence relation of the form:a, =c,a, , +c,a, , +...+C,a, ,,

where ¢y, Cy, ..., Cx are constant real numbers with ¢, = 0.

Example : Fibonacci sequence is also an example of a linear homogeneous

recurrence relation of degree 2.

elation @, = an1 not linear (due to + an- -
he relation H, = 2H,4 + 1 is P_ﬂq;.hd“rﬁogeneous

.

Example: The re

]

a linear homog_e_g_ew? recurrence

_’_,-E-
relation to look for the of the fgr.m"an = rn, where r is

constant. Note that, r" is a solution to the linear homogeneous

recurrence relation of

degree k, if and only if;

(M =G -1y Cn=2 ¢ "K' \When both the sides of the

equation are

divided by rn_k and right side is subtracted from the left side, we
obtain an equation, known as characteristic equation of the recurrence
relation as

follows:

r“—cr* —c,r*—-.~c_r—c =0.

The solutions of the equation are called as characteristic roots of
the recurrence relation.



In this subsection, we shall focus on solving linear homogeneous
recurrence relation of degree 2 that is: a, = C1a, 1 + Ca, ».

The characteristic equation of this relation is r* — ¢c;r — ¢, = 0. This is a
quadratic equation and has two roots. Two cases arise.

(i) Roots are distinct, say s1 and s,. Then, it can be shown that
a, =us +vs;is a solution to the recurrence relation, with

— _ 2 2
a, =us, +Vs, and a, =us; +Vs,.

(ii) Roots are equal, say s. Then it can be shown that a, solution to the
recurrence relation is a,= (u+vn)s"

We shall use above results to solve some problems
Example : Solve the recurrence relation b, + 3b, ; + 2b, , = 0, with b; = -2 and
b2 =4,

Solution: The characteristic equation to the given recurrence relation is X2

0. Roots of this equation are s1 = -2 and s2 = — 1.

Solving thes

Thus, explicit solution t

Method for solving linear non-homogeneous recurrence relations with
constant coefficients:

The method is similar to the solution differential equation by method of

undermined co-efficient.



GENERATING FUNCTION:

Let a,,4a,,...a,be a sequence, and then the corresponding generating function is given
by:
A(X) = agx° +ax' +..+a,x"

For Example, if 1, 1, 1,.... be a sequence then the corresponding generating function is
given by:

AX) =1+ X+ x> +...=1/(1-X)

From a given sequence we can find the corresponding generating function and vice

VErsa.




Unit 11

INTRODUCTION TO RELATIONS AND
GRAPH THEORY

OBJECTIVES:

After going through this unit, you will be able to know:
= Definition of Relation.
= Representation of Relations
= Types of Relations
= Equivalence of relations

= Relations and Partition

Definition and examples of partial order relation

of posets using Hasse diagram

Graph terminole
= Graph isomorphism
= Connectivity

= Euler and Hamilton paths
= Planar graphs

= Graph colouring

= Introduction to trees

INTRODUCTION :

Relationships between elements of sets occur in many
contexts. We deal with many relationships such as student’s name
and roll no., teacher and her specialization, a person and a relative
(brother — sister, mother — child etc.). In this section, we will discuss
mathematical approach to the relation. These have wide applications in
Computer science (e.g. relational algebra)



RELATIONS:

Relationship between elements of sets is represented using a mathematical structure

called relation. The most intuitive way to describe the relationship is to represent

in the form of ordered pair. In this section, we study the basic terminology

and diagrammatic representation of relation.

Definition :
Let A and B be two sets. A binary relation from A to B is a subset of A x B.

Note : If A, B and C are three sets, then a subset of AxBxC is known as ternary
relation. Continuing this way a subset of A1xA2x...xAn is known as n — ary

relation.

Note: Unless or otherwise specified in this chapter a relation is a binary relation.

Let A and B be two sets. Suppose R is a relation from A to B (i.e. Ris a

subset of A x B). Then, R is a set of ordered pairs where each first element

and each second element from B. Thus, we denote it with an
.,\?vﬁéfréfap.,e’ Aand b ¢ B. We also denote the relationship with
aRb, : related 10 b. The domain of R is the set of all first
elements in the ﬁge of R is the set.of all second elements

in the ordered pair.

Example 1: Let A={1,2,3,4}and B ={x, y z} LetR={(1, x), (2,x), (3, %), (3, 2}
Then R is a relation from A to B.

Example 2: Suppose we say that two countries are adjacent if they have some part
of their boundaries common. Then, “is adjacent to”, is a relation R on the
countries on the earth. Thus, we have, (India, Nepal) € R, but (Japan, Sri

Lanka) ¢ R.

Example 3: A familiar relation on the set Z of integers is “m divides n”. Thus,
we have, (6, 30) € R, but (5, 18) ¢ R.

Example 4: Let A be any set. Then A x A and ¢ are subsets of A x A and hence
they are relations from A to A. These are known as universal
relation and empty relation, respectively.

Note : As relation is a set, it follows all the algebraic operations on relations that we
have discussed earlier.



Definition : Let R be any relation from a set A to set B. The inverse of R,

denoted by R_l, is the relation from B to A which consists of those

ordered pairs, when reversed, belong to R. That is:

RL={b,a):(ab)cR}

Example 5:
Inverse relation of the relation in example 1 is, R = {(x,), (x, 2), (v, 3), (z, 3)}.

REPRESENTATION OF RELATIONS:
Matrices and graphs are two very good tools to represent various
algebraic structures. Matrices can be easily used to represent relation in
any programming language in computer. Here we discuss the

representation of relation on finite sets using these tools.

ion in Examplel.

Xy z
11100
211 00
31011
4110 00

Fig. 1



Thus, if a R b, then we enter 1 in the cell (a, b) and 0 otherwise. Same relation can
be represented pictorially as well, as follows:

\
—

Fig 2
Thus, two ovals represent sets A and B respectively and we draw an arrow from
aceAtobeB,ifaRhb.

If the relation is from a finite set to itself, there is another way of pictorial representation,
known as diagraph.

For example, let A = {1, 2, 3, 4} and R be a relation from A to itself, defined
as follows:

Fig 3

The directed graphs are very important data structures that have
applications in Computer Science (in the area of networking).

Definition : Let A, B and C be three sets. Let R be a relation from Ato B and S
be a relation from B to C. Then, composite relation R°S, is a

relation from A to C, defined by, a(R°S)c, if there is some b € B, such
thataRbandb Sc.

Example 6: LetA={1,2,3,4},B={a,b,c,d},\C={x,y,z }and let R = {(1, a), (2, d),
(3,a), (3, b), (3, d)} and S = {(b, x), (b, 2), (c, y), (d, 2)}.



Pictorial representation of the relation in Example 6 can be shown as

below (Fig 4).
. £a
2 b X
3 c y
4 d b Z

Fig.4

Thus, from the definition of composite relation and also from Fig 4, R°S
will be given as below.

R°S = {(2, 2), (3, X), (3, 2)}.

There is another way of finding composite relation, which is using
matrices.

Example7: Ca
as foll

0 0 0 0




Consider the product of matrices Mg and Ms as follows: Observe that the non-zero entries
in the product tell us which elements are _related in R°S. Hence, MgMs and Mg-s have
same non-zero entries.

TYPES OF RELATIONS:

In this section, we discuss a number of important types of relations defined from a set
A to itself.

Definition : Let R be a relation from a set A to itself. R is said to be reflexive, if for
every a € A, aR a (ais related to itself).
Example 8: Let A={a, b, ¢, d} and R be defined as follows: R = {(a, a), (a, c), (b, a), (b, b),
(c,c), (d, ¢), (d, d)}. Ris areflexive relation.
Example 9: Let A be a set of positive integers and R be a relation on it defined as,
a R b if “a divides b”. Then, R is a reflexive relation, as a

divides to itself for every positive integer a.

Note : If we draw a diagraph of a reflexive relation, then all the vertices will have a
loop. Also if we represent reflexive relation using a matrix, then all its

diago ies will be 1.

Definition : lation from a set A to itself. R is said to be irreflexive,

Fa

Example 10: Let A i tegeré and R'be a relation on it defined as,

a R b if “a is less than b”. lexive relation, as'a is not less than
itself for any positive intege
Example 11: Let A={a, b, ¢, d} and R be d as follows: R = {(a, a), (a, c), (b, a), (b,
d), (c, ¢), (d, c), (d, d)}.Here R is neither reflexive nor irreflexive relation as b

is not related to itself and a, c, d are related to themselves.

Note : If we draw a diagraph of an irreflexive relation, then no vertex will have a loop.
Also if we represent irreflexive relation using a matrix, then all its diagonal

entries will be 0.

Definition : Let R be a relation from a set A to itself. R is said to be symmetric, if for
a,beA/ifaRbthenbRa.

Definition : Let R be a relation from a set A to itself. R is said to be anti-symmetric, if for
a,beAifaRbandbRa,then a="0b. Thus, R is not anti-symmetric
if there exists a, b € AsuchthataR b and b R a but a= b.

Example 13: Let A = {1, 2, 3, 4} and R be defined as:
R={(1, 2), (2, 3), (2,1), (3, 2), (3, 3)}, then R is symmetric relation.

Example 14: An equality (or “is equal t0”) is a symmetric relation on the set of
integers.



Example 15: Let A = {a, b, c, d} and R be defined as: R = {(a, b), (b, a), (a, c), (c, d),
(d, b)}. R is not symmetric, as a R ¢ but'c R a. R is not anti-symmetric, because
aRbandbRc, buta=bh.

.Example 16: The relation “less than or equal to (<£)”, is an anti- symmetric

relation.

Example 17: Relation “is less than ( < )”, defined on the set of all real numbers, is an
asymmetric relation.

Definition : Let R be a relation defined from a set A to itself. R is said to transitive, if for
a,b,ceA aRbandbRc,thenaRc.

Example 18: Let A = {a, b, ¢, d} and R be defined as follows: R = {(a,b), (a, c¢), (b, d),
(a, d), (b, ¢), (d, ¢)}. Here R is transitive relation on A.

Example 19: Relation “a divides b”, on the set of integers, is a transitive relation.

Definition : Let R be a relation defined from a set A to itself. If R is reflexive, symmetric
and transitive, then R is called as equivalence relation.

L of lines in the Euclidean plane. ines in the plane
hey are parallel to each er. This relation is an

Example 20: q

Example 21: Let m be"
congruent modulo m

Example 22 : LetA={2,3,4,5}and letR={(2,3),(3,3),(4,5),(5.1)} . Is R symmetric,
asymmetric or antisymmetric



Solution :
a)  Risnot symmetric, since(2,3)eR, but(3,2)¢R,

b) R is not asymmetric since (3,3) eR
C) R is antisymmetric.

Example 23 : Determine whether the relation R on a set A is reflexive, irreflexire,
symmetric, asymmetric antisymmetric or transitive.

1) A = set of all positive integers,aR b iff a—-b <2.

Solution :
1) R is reflexive because |[a—a|=0<2,VaeA

2) R is not irreflexive because fl-1|=0<2 for 1e A (.. A is the set
of all positive integers.)
3) R is symmetric because [a—b|<2=|b—a|<2 ..aRb=bRa
4) R is not asymmetric because 5—4|<2 and we have [4—5|<2
Z5R4=4R5
5) R is not antisymmetric because 1R2 & 2R1 1R2=>f1-2|<2 &

2R1=[2-1<2.But 1%2

6) sitive because 5R 4, 4R 2but5 R 2
1))
Solution : -
As per above exa a is not reflexive, R is
irreflexive, symmetric, not asyl i tisymmetric & not transitive

I LetA={1,2, 3 4}and R {(1,1), (2,2), (3,3)}

1)  Risnot reflexive because (4,4)¢R

2) R is not irreflexive because (11)¢ R

3) R is symmetric because whenever a R b then b R a.
4) R is not asymmetric because R|= R|

5) R is antisymmetric because 2R2,2R2=2=2

6) R is transitive.

IV) Let A=Z",aRbiff GCD (a, b) = 1 we can say that a and b are
relatively prime.

1) R is not reflexive because (3,3)=1itis3. .(3,3)¢R
2) R is not irreflexive because (1,1) =1



3) R is symmetric because for(a,b)=1=(b,a)=1. .aRb—bRa
4) R is not asymmetric because (a, b) = 1 then (b, a) = 1
~.aRb—->bRa
5) R is not antisymmetric because 2 R 3and 3R 2 but 2+ 3.
6) R is not transitive because 4 R 3, 3 R 2 but 4 R/ 2 because
(42 =G.CD. (4,2) = 2#1.

V) A=ZaRbiff a<b+1

1) R is reflexive because a<a+1 v+ ae|A.

2) R is not irreflexive because 0<0+1 for O A.

3) R is not symmetric because for 2<5+1 does not imply 5<2+1.
4) R is not asymmetric because for (2,3) € R and also (3,2) €R.

5) R is not antisymmetric because 5R4and 4 R5but 4=5.

6) R is not transitive because (6,45) € R, (5,4) € R but (6,47) ¢ R.

RELATIONS AND PARTITION:

In this section, we shall know what partitions are and its relationship
with equivalence relations.

Definition :

and. S'6f P, then AinAz =g
The sets in P are called the blo e partition. g

Example : Let A = {1, 2, 3, 4, 5}. The Tollewing efs form a partition of A, as A =
A1UA2UA3andA1ﬁA2=(I), AlﬂA3=(1), andAzﬂAgzd).
A ={1, 2}; A, ={3,5}; A; = {4}.

Example 24: Let A = {1, 2, 3, 4, 5, 6}. The following sets do not form a partition of A, as
A=A UA, UAsbut Ay mA; = d.A={1, 2}; A, ={3,5}; As={4, 5, 6}.
The following result shows that if P is a partition of a set A, then P can be

used to construct an equivalence relation on A.

Theorem: Let P be a partition of a set A. Define a relation R on A as a R b if and only if
a, b belong to the same block of P then R is an equivalence relation on A.



Example 25: Consider the partition defined in Example 23. Then the equivalence
relation as defined from the partition is:
R={(1, 1).(1, 2).(2, 1).(2, 2),(3, 3).(3, 5), (5, 3), (5, 5), (4, 4)}-
Now, we shall define equivalence classes of R on a set A.

Theorem: Let R be an equivalence relation on a set A and let a, b € A, then aR_b if and
only if R(a) = R(b), where R(a) is defined as: R(a) = {x € A:aR x}. R(a) is
called as relative set of a.

Example26: If we consider an example in 25, we observe that, R(1) = R(2), R(3) = R(5).
Because R (1) = {1,2}, R (2) = {1,2}, R (3) = {3,5}, R(5) = {3,5}.

Earlier, we have seen that, a partition defines an equivalence relation. Now,
we shall see that, an equivalence relation defines a partition.

Theorem: Let R be an equivalence relation on A and let P be the collection of all distinct
relative sets R(a) for a € A. Then P is a partition of A and R is equivalence
relation of this partition.

Example 28: Let A= Z (set 0 Jefine R as
R={(a, b) € AxA:a=b (moe Then, weshave,

R(1), R(2), R(3), R(4) and R(5) form partition on Z with respect to given
equivalence relation.

PARTIAL ORDER RELATION

We often use relation to describe certain ordering on the sets. For example,
lexicographical ordering is used for dictionary as well as phone directory. We
schedule certain jobs as per certain ordering, such as priority. Ordering of numbers
may be in the increasing order.

In the previous chapter, we have discussed various properties (reflexive etc) of
relation. In this chapter we use these to define ordering of the sets.



Definition 1: A relation R on the set A is said to be partial order relation, if it is
reflexive, anti-symmetric and transitive.

Before we proceed further, we shall have a look at a few examples of partial order
relations.

Example 1: Let A = {a, b, ¢, d, e}. Relation R, represented using following
matrix is a partial order relation.

M1111
01111
00111
00011

o 0001

Observe the reflexive, anti-symmetric and transitive properties of
the relation from the matrix.

Example 2: Let A be a set of natural numbers and relation R be “less than or equal to

ation (<)”. Then R is a partial order relation on A. For any m, n, k €
flexive); if m <n and m > n, “m = n (anti-
ifm<nandn <k then m <k (transitive).

Definition : If , set_A,-tﬁéﬁ-A is called as_partial order set
ypically this set_isstermed as poset and

and it 1s"
the pair is dene

DIAGRAMMATIC REPRESENTATION PA TII_/-AL ORDER RELATIONS

AND POSETS:
In the previous chapter, we have seen the diagraph of a relation. In this section, we use the

diagraphs of the partial order relations, to represent the relations in a very suitable way
where there no arrowhead and transitivity shown indirectly known as Hasse diagram.
We understand the Hasse diagram, using following example.

Example 1: Let A = {a, b, c, d, e} and the following diagram represents the diagraph of
the partial order relation on A.




Now, we shall draw Hasse diagram from the above diagrams using following rules.
(i) Drop the reflexive loops

Fig. 2

(ii) Drop transitive lines

(iii)Drop arrows

Fig.4



Note : In many cases, when the graphical representation is so oriented that all the arrow
heads point in one direction (upward, downward, left to right or right to left). A

graphical representation in which all the arrowheads point upwards, is known as
Hasse diagram.

Example 4: "Let A={1, 2, 3, 4, 6, 9} and relation R defined on A be “ a divides b”. Hasse
diagram for this relation is as follows:

Note : The reader is advised to verify that this relation is indeed a partial order relation.
Further, arrive at the following Hasse diagram from the diagraph of a relation as
per the rules defined earlier.

Fig.5

Example 5 : Determine the Hasse diagram of the relation on A ={1,2,3,4,5}
whose Mg is given below :

10111
01111
Mg={0 0 1 1 1
0 00 10
0 00 0 1]

Solution :

Reflexivity is represented by 1 at diagonal place. So after removing
reflexivity R is R = {(1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5)}
Remove transitivity as



(13)(3,4)eR
~.remove (14)eR
(2,3)(3,5)eR ..remove (2,5)eR and so on.

“R={(19),(23).(3.4),(35)

The Hasse Diagram is

ONRO.
(X)
OO,

artial order whose Hasse diagram is given as follow -

S

Example 6 :

Determine matrixe

Solution :
Here A=1[1, 2, 3,4,5)

Write all ordered pairs (a, a) ~ a< A i.e. relation is reflexive.



Then write all ordered pairs in upward direction. As (1, 2) eR & (24) eR=(1,4)eR since
R is transitive.

~R={11),(2,2),(3,3),(4,4),(5,5),(1,2),(2,4),(2,4),(1,4), (1,3),(3,5), (1,5)}

The matrix Mg can be written as -

1 1 1 1 1
O 1 0o 1 o
M,.=|0 0 1 0 1
O 0O 0 1 O
O O 0 0O 1
Now, we shall have it certain terms with reference to posets. .

ered set. Elements a, b e ra?'é-said to be comparable, ifa<b
( p

ompa l,e-,"v'QF\ereas 4 and 9 are not

et. A SM-ZTS said to be a chain if every two

Example 7: In the poset of example 4, subsets {1, 2, 4}; {1, 3, 6}:{1, 2, 6} and {1, 3, 9}
are chains.

comparable.

Definition : Let (A, <) be a partially orde
elements in the subset are related.

Definition : A subset of a poset A is said to be anti-chain, if no two elements of it are related.
Example 8: In the poset of example 4, subsets {2, 9}; {3, 4}; {4, 6, 9}are anti-chains.
Definition : A partially ordered set A is said to be totally ordered if it is chain.

Example 9: Let A={2, 3,5, 7, 11, 13, 17, 19} and the relation defined on A be <.
Then poset (A, <) is a chain.

CLOSURE PROPERTIES
Consider a given set A and let R be a relation on A. Let P be a property of such relations,
such as being reflexive or symmetric or transitive. A relation with property P will be called
a P-relation. The P-closure of an arbitrary relation R on A, written P (R), is a P-relation such
that



RcScPR)ESS
for every P-relation S containing R. We will write

reflexive (R),symmetric(R),and transitive(R)
for the reflexive, symmetric, and transitive closures of R.

Generally speaking, P (R) need not exist. However, there is a general situation where P (R)
will always exist. Suppose P is a property such that there is at least one P-relation containing
R and that the intersection of any P-relations is again a P-relation. Then one can prove that
PR)=N(S|SisaP-relationand R € S)
Thus one can obtain P (R) from the “top-down,” that is, as the intersection of relations. However,
one usually wants to find P (R) from the “bottom-up,” that is, by adjoining elements to R to obtain
P (R). This we do below.

Reflexive and Symmetric Closures
The next theorem tells us how to obtain easily the reflexive and symmetric closures of a

relation. Here
A={(a, a) | a € A} is the diagonal or equality relation on A.

Theorem: Let R be arelation on a set A. Then:
(i) R
(i) R

In other words, refles

eflexive closure of R. -

diagonal which do not aé
(b, @) whenever (a, b) belongs to R.

EXAMPLE 10 Consider the relation R = {(1, 1), (1, 3), (2, 4), (3, 1), (3, 3), (4, 3)} on the
setA={1, 2, 3, 4}.

Then
reflexive(R) =R U {(2, 2), (4, 4)} and symmetric(R) =R U {(4, 2), (3, 4)}

Transitive Closure

Let R be a relation on a set A. Recall that R= R°R and R"= R"* *R. We define
The following theorem applies:

Theorem : R is the transitive closure of R.



Suppose A is a finite set with n elements. We show

n

R+=RUR’...UR

This gives us the following theorem:
Theorem : Let R be a relation on a set A with n elements. Then

transitive (R) =RUR’U ... UR"

EXAMPLE 11 Consider the relation R = {(1, 2), (2, 3), (3,3)}on A ={1, 2, 3}.
Then:
R*=R <R = {(1, 3), (2, 3), (3, 3)} and R’= R%R = {(1, 3), (2, 3), (3, 3)}

Accordingly,
transitive (R) = {(1, 2), (2, 3), (3, 3), (1, 3)}

MAXIMAL, MINIMAL ELEMENTS AND LATTICES:

we discuss certain element types in the poset and
oset, Lattice.

a Fig. 7



Definition : Let (A, <) be a poset. An element a € A is called a maximal
element, if fornob € A,a=b,a<b. E.g. In Fig. 4, j and k are maximal

elements.

Definition : Let (A, <) be a poset. An element a € A is called a minimal element, if for no
beA a#b,b<a. E.g. InFig. 4.6, a, b and e are minimal elements.

Definition : Let a, b be two elements in the poset (A, <). An element ¢ € A, is said to be
an upper bound of a, b ifa <c and b <c. E.g. In Fig 7, f; h are upper bounds
of b and d.

Definition : Let a, b be two elements in the poset (A, <). An element ¢ € A, is said to be a
least upper bound of a, b ifa<cand b <c and if d is an upper bound of a, b,
then c < d. E.g. In Fig 2, f is a least upper bound of b and d.

Definition : Let a, b be two elements in the poset (A, <). An elementc € A, is said to be
a lower bound of a, b if c <a and ¢ < b. E.g. In Fig 6, f, g are lower bounds
of hand i.

Definition : Let a, b be two elements in the poset (A, <). An element c € A, is said to be
a greatest lower bound of a, b if c <a and ¢ < b and if d is a lower bound of a,
b, the . E.g. In Fig 4, c is a greatest lower bound of e and g.

Definition : said to be a lattice, if every t ements in A have a

uni a unique greatest low:

und.

E.g. Fig. 6 is not ' and i, whereas

Fig. 7 is a lat

ast upper bounds



Graph Theory

Graphs with Basic Terminology

The fundamental concept of graph theory is the graph, which (despite the name) is best
thought of as a mathematical object rather than a diagram, even though graphs have a
very natural graphical representation. A graph — usually denoted G(V,E) or G = (V,E) —
consists of set of vertices V together with a set of edges E. Vertices are also known as
nodes, points and (in social networks) as actors, agents or players. Edges are also
known as lines and (in social networks) as ties or links. An edge e = (u,v) is defined by
the unordered pair of vertices that serve as its end points. Two vertices u and v are
adjacent if there exists an edge (u,v) that connects them. An edge e = (u,u) that links a

vertex to itself is known as a self-loop or reflexive tie. The number of vertices in a graph

is usually denoted n while the number of edges is usually denoted m.

Figure 1.

When looking at visualizations of graphs such as Figure 1, it is important to realize that
the only information contained in the diagram is adjacency; the position of nodes in the
plane (and therefore the length of lines) is arbitrary unless otherwise specified. Hence it
is usually dangerous to draw conclusions based on the spatial position of the nodes. For
example, it is tempting to conclude that nodes in the middle of a diagram are more
important than nodes on the peripheries, but this will often — if not usually — be a

mistake.



When used to represent social networks, we typically use each line to represent
instances of the same social relation, so that if (a,b) indicates a friendship between the
person located at node a and the person located at node b, then (d,e) indicates a
friendship between d and e. Thus, each distinct social relation that is empirically
measured on the same group of people is represented by separate graphs, which are
likely to have different structures (after all, who talks to whom is not the same as who
dislikes whom).

Every graph has associated with it an adjacency matrix, which is a binary nxn matrix A
in which a; = 1 and a; = 1 if vertex vi is adjacent to vertex vj, and aij = 0 and aji = 0
otherwise. The natural graphical representation of an adjacency matrix is a table, such as

shown in Figure 2.

Figure 2. Adjacency mat xfor graph in Figure 1.

Examining either Figure 1 or Figure 2, we can see that not every vertex is adjacent to
every other. A graph in which all vertices are adjacent to all others is said to be
complete. The extent to which a graph is complete is indicated by its density, which is
defined as the number of edges divided by the number possible. If self-loops are
excluded, then the number possible is n(n-1)/2. If self-loops are allowed, then the

number possible is n(n+1)/2. Hence the density of the graph in Figure 1 is 6/15 = 0.40.

A clique is a maximal complete subgraph. A subgraph of a graph G is a graph whose
points and lines are contained in G. A complete subgraph of G is a section of G that is
complete (i.e., has density = 1). A maximal complete subgraph is a subgraph of G that is
complete and is maximal in the sense that no other node of G could be added to the

subgraph without losing the completeness property. In Figure 1, the nodes {c,d,e}



together with the lines connecting them form a clique. Cliques have been seen as a way
to represent what social scientists have called primary groups.

hile not every vertex in the graph in Figure 1 is adjacent, one can construct a sequence
of adjacent vertices from any vertex to any other. Graphs with this property are called
connected. Similarly, any pair of vertices in which one vertex can reach the other via a
sequence of adjacent vertices is called reachable. If we determine reachability for every
pair of vertices, we can construct a reachability matrix R such as depicted in Figure 3.
The matrix R can be thought of as the result of applying transitive closure to the

adjacency matrix A.

Figure 3._

A component of a graph is S a miﬂ'gmal subgraph.in‘which a path exists from

every node to every other (i.e., they tually reachable). The size of a component is

defined as the number of nodes it contains. A connected graph has only one component.

A sequence of adjacent vertices vo,v1,...,vq IS known as a walk. In Figure 3, the sequence
a,b,c,b,a,c is a walk. A walk can also be seen as a sequence of incident edges, where two
edges are said to be incident if they share exactly one vertex. A walk in which no vertex
occurs more than once is known as a path. In Figure 3, the sequence a,b,c,d,e,f is a path.
A walk in which no edge occurs more than once is known as a trail. In Figure 3, the
sequence a,b,c,e,d,c,g is a trail but not a path. Every path is a trail, and every trail is a
walk. A walk is closed if v, = v,. A cycle can be defined as a closed path in which n >=
3. The sequence c,e,d in Figure 3 is a cycle. A tree is a connected graph that contains no
cycles. In a tree, every pair of points is connected by a unique path. That is, there is only

one way to get from A to B.

The length of a walk (and therefore a path or trail) is defined as the number of edges it
contains. For example, in Figure 3, the path a,b,c,d,e has length 4. A walk between two

vertices whose length is as short as any other walk connecting the same pair of vertices



is called a geodesic. Of course, all geodesics are paths. Geodesics are not necessarily
unique. From vertex a to vertex f in Figure 1, there are two geodesics: a,b,c,d,e,f and

a,b,c,g,ef.

The graph-theoretic distance (usually shortened to just “distance”) between two vertices is
defined as the length of a geodesic that connects them. If we compute the distance between
every pair of vertices, we can construct a distance matrix D such as depicted in Figure 4. The
maximum distance in a graph defines the graph’s diameter. As shown in Figure 4, the diameter
of the graph in Figure 1 is 4. If the graph is not connected, then there exist pairs of vertices
that are not mutually reachable so that the distance between them is not defined and the

diameter of such a graph is also not defined.

aBcdef G

al0123343

b|1012232

c({2101121

3210122 -

11011

Figure 4. Distance matrix for graph in Figure 3.

The powers of a graph’s adjacency matrix, AP, give the number of walks of length p
between all pairs of nodes. For example, A% obtained by multiplying the matrix by

itself, has entries ai? that give the number of walks of length 2 that join node v; to node

vj. Hence, the geodesic distance matrix D has entries djj = p, where p is the smallest p
such that aj > 0. (However, there exist much faster algorithms for computing the

distance matrix.)

The eccentricity e(v) of a point v in a connected graph G(V,E) is max d(u,v), forallu € V.
In other words, a point’s eccentricity is equal to the distance from itself to the point
farthest away. The eccentricity of node b in Figure 3 is 3. The minimum eccentricity of
all points in a graph is called the radius r(G) of the graph, while the maximum
eccentricity is the diameter of the graph. In Figure 3, the radius is 2 and the diameter is

4. A vertex that is least distant from all other vertices (in the sense that its eccentricity



equals the radius of the graph) is a member of the center of the graph and is called a
central point. Every tree has a center consisting of either one point or two adjacent

points.

Directed Graphs

As noted at the outset, the edges contained in graphs are unordered pairs of nodes (i.e.,
(u,v) is the same thing as (v,u)). As such, graphs are useful for encoding directionless
relationships such as the social relation “sibling of” or the physical relation “is near”.
However, many relations that we would like to model are not directionless. For
example, “is the boss of” is usually anti-symmetric in the sense that if u is the boss of v,
it is unlikely that v is the boss of u. Other relations, such as “gives advice to” are simply
non-symmetric in the sense that if u gives advice to v, v may or may not give advice to

u.

To model non-symmetric relations we use directed graphs, also known as digraphs. A
digraph D(V,E)
arcs or direct > (u,v) points from u to v.

ists of a set of nodes V and a set of ordered pairs of nodes E called

Figure 5a




Figure 5b

Digraphs are usually represented visually like graphs, except that arrowheads are placed
on lines to indicate direction (see Figure 5). When both arcs (u,v) and (v,u) are present in
a digraph, they may be represented by a double-headed arrow (as in Figure 5a), or two
separate arrows (as shown in Figure 5b).

In a digraph, a walk is a sequence of nodes V,,V1,...v, in which each pair of nodes v;,
vi+1 is linked by an arc (v;,vi+1). In other words, it is a traversal of the graph in which
the flow of movement follows the direction of the arcs, like a car moving from place to
place via one-way streets. A path in a digraph is a walk in which all points are distinct.
A semiwalk is a sequence of nodes Vo,Vi,...vy In Which each pair of nodes vj, vi+1 is
linked by either the arc (vj,vi+1) or the arc (vi+1,v;). In other words, in a semiwalk, the
traversal need not'réspect the direction of arcs, like a car that freely goes the wrong way

on one-way Byrénalogy, we can also define a semipath, semitrail, and

semicycle.

Another way to think ks on the underlying graph, where the

underlying graph is the graph s formed from'the digraph D(V,E”’) such that
(u,v) € Eifand only if (u,v) € E’ or (v,u hus, the underlying graph of a digraph

is basically the graph formed by ignoring directionality.

A digraph is strongly connected if there exists a path (not a semipath) from every point
to every other. Note that the path from u to v need not involve the same intermediaries
as the path from v to u. A digraph is unilaterally connected if for every pair of points
there is a path from one to the other (but not necessarily the other way around). A
digraph is weakly connected if every pair of points is mutually reachable via a semipath
(i.e., if the underlying graph is connected).

A strong component of a digraph is a maximal strongly connected subgraph. In other
words, it is a subgraph that is strongly connected and which is as large as possible (there
is no node outside the subgraph that is strongly connected to all the nodes in the
subgraph). A weak component is a maximal weakly connected subgraph.

The number of arcs originating from a node v (i.e., outgoing arcs) is called the outdegree
of v, denoted od(v). The number of arcs pointing to a node v (i.e., incoming arcs) is

called the indegree of v, denoted id(v). In a graph representing friendship feelings



among a set of persons, outdegree can be seen as indicating gregariousness, while
indegree corresponds to popularity. The average outdegree of a digraph is necessarily

equal to the average indegree.

The adjacency matrix A of a digraph is an n x n matrix in which a;; = 1 if (v;,v;) € E and
aij = 0 otherwise. Unlike the adjacency matrix of an undirected graph, the adjacency
matrix of a directed graph is not constrained to be symmetric, so that the top right half
need not equal the bottom left half (i.e., a; <> a;). If a digraph is acyclic, then it is
possible to order the points of D so that the adjacency matrix upper triangular (i.e., all

positive entries are above the main diagonal).
Some notations
Ky : the complete graph on n vertices.
Cp : the n-cycle graph.
Km,n : the complete bipartite graph on m+n vertices and mn edges..

K1 n : the sté n n+1 vertices. -

mKj, : m di

Paths and Circuits™

> chain : A sequence of ve

vi_1vie Eorvivi_i € E ¢

> path : A sequence of vertices [v09vlav29---vl] is a path from vg to v| of length |
inGif ViciVi € E fori=1,2, ...
» simple path: It does not include the same edge twice.

> elementary path(or chain): A path or chain in G is called elementary if no vertex

occurs more than once.

» connected graph : A graph G is connected if between any two vertices there exists a

path in G joining them.

» strongly connected graph : A graph G is strongly connected if for any two vertices x

and y there exists a path in G from x to y.

> elementary cycle(circuit) : A cycle [Vo, Vi, V2, Vi, V0l is a elementary cycle if

vj = vj fori.



> chordless cycle : A simple cycle [V, VisVa,.. Vi, Vol is chordless if vj vj£E for

i and j differing by more than 1 mod 1+1.

» Theorem : In a (directed or undirected) graph with n vertices, if there is a path from
vertex vy to vertex vy, then there is a path of no more than n-1 edges from v; to

vertex vs.

> bipartite graph : An undirected graph G=(V,E) is bipartite if its vertices can be
partitioned into two disjoint stable sets V=S1+S»>.
complete bipartite graph : A bipartite graph G=(51,52,E) is complete if for every xeSq
and yeS» we have xyeE, i.e., every possible edge that could exist does exist.
Eulerian Paths and Circuits

> L. Euler, the father of the graph theorysolved the Konigsberg’s bridge problem,
1736

> Eulerian path problem : a path that traverses each edge in the graph once and only

once. A

» Theorem:
connected

dire&éd—grgph possess an Eulerian path.-#f and only if it is
ero or two vertices of odd degree.

Proof. (=) Suppo sess an Eulerian path. It must beseonnected.

When the eulerian we observe that'every time the path meets a

vertex, it goes through twi which.are incident with the vertex and have

not been traced before.
Thus, except for the two vertices at the ends of the path, the degree of any
vertex in the graph must be even.

(<) omitted.

» Theorem: An undirected graph possess an Eulerian circuit if and only if it is
connected and has no vertices of odd degree.

» Theorem : An directed graph possess an Eulerian circuit if and only if it is
connected and the incoming degree of every vertex is equal to its outgoing degree.

» An directed graph possess an eulerian path if and only if it is connected and the
incoming degree of every vertex is equal to its outgoing degree with the possible
exception of two vertices. For these two vertices, the incoming degree of one is one
larger than its outgoing degree, and the incoming degree of the other is one less than

its outgoing degree.



Hamiltonian Paths and Circuits

>

Hamiltonian path : A path that passes through each of the vertices in a graph exactly

once.

No simple necessary and sufficient condition is known for graph to have a

Hamiltonian path or circuit.

Theorem : Let G be a linear graph of n vertices. If the sum of the degrees for each

pair of vertices in G is n - 1 or larger, then there exists a hamiltonian path in G.

Proof. (1) G is connected:

Suppose G has two or more disconnected components. Let v, be a vertex in
one component that has n; vertices and v, be a vertex in another component

that has n, vertices.

Since the degree of v, is at most n; - 1.and the degree of v, is at most n, -1,

the sum of their degrees is at most n; + n; - 2 < n - 1, contradicts to the

15-'-’-[-
(2) const —
V' Let there'e n) pa h-,"'(i/-I, V2, V3, ..., vp)..BOth v and v, are
adjacent only‘ to are in the path._jl(-"?-r
v' There is a cycle containing exact VErtices Vi, Vo, Vs, ..., Vp.

<> Assume v is adjacent to VI-1 ’sz , ""ka , Where 1 <ij<p.

<> If vp is adjacent to one of Vi-1Vi=1s Vi 15 then we have
the cycle.
< If vp is not adjacent to any one of Vz'l—l ’ij—l , ..,ij _1, then

Vp is adjacent to at most p-k-1 vertices. Contradicts to the assumption.

v" Pick a vertex vy that is not in the cycle. Because G is connected, there is a
vertex vi that is not in the cycle with an edge between vy and vy for some v in
{V1, Vo, V3, ..., Vp}.

v" We now have the path (Vx, Vi, Vit1y «ees Vi1, Vpy Vp-1s eeesVjs V1, V2, V3 eusy V1),

which contains p edges.

v" Repeat the foregoing construction until we have a path with n - 1 edges.



» Theorem : There is always a hamiltonian path in a directed complete graph.

Proof. Let there be a length p-1 (p < n) path, (vi, V2, V3, ..., vp). Let vy be a vertex
that is not included in this path, and there is no edge from vy to vi. However, (vi,
Vy) € G.

Suppose that (vx, V) is also an edge in the path. Replace the edge (vi, Vv2) in
the original path with the two edges (vi, vx) and (vy, Vv2) so that the vertex vy

will be included in the argument path.

If there is no edge from v to vy, then there must be an edge (vz, vx) in the path

and we can repeat the argument.

If we find that it is not possible to include vertex vi in any augment path by
replacing an edge (vk, Vk+1) in the original path with two edges (vk, vx) and (v,

Vier)With 1 <k <p-1, then we conclude that there must be an edge (vp, Vy) in the

graph.

Etfth_e_argument until all vertices in the graph are included in the

> There is no soluﬁb’n—tgjhe problem of proving the non-existence
of a hamiltonian p

Planar Graphs

> planar graph : A graph is said to be T it can be drawn on a plane is such a

way that no edges cross one another, except, of course, at common vertices.

» Region : A region of a planar graph is defined to be an area of the plane that is
bounded be edges and is not further divided into subareas. A region is said to be
finite if this area is finite, and is said to be infinite if its area is infinite. Clearly, a

planar graph has exactly one infinite region.
»  Theorem : For a connected planar graph,v - e + r = 2 (Euler’s formula)
where v, e, and r are the number of vertices, edges, and regions of the graph,

respectively.

»  Application of Euler’s formula : In any connected planar graph that has no loops

and has two or more edges,e <3v -6.

» Theorem (Kuratowski): A graph is planar if and only if it does not contain any

subgraph that is isometric to o either Ks or K3 3.



>

Tree: A part of a graph that is connected and contains no cycles.

Theorem: A connected graph possesses a tree iff there is exactly one path in
between every pair of vertices.

Theorem: A tree with n vertices has exactly n — 1 vertices.

Spanning Tree: A tree containing all the vertices with exactly n — 1 edges.

There are two algorithms namely Kruskal’s and Prim” algorithms to find the MST.




Unit 111
GROUP THEORY
OBJECTIVES:

After going through this unit, you will be able to know:
= Binary Operation
= Definition of Group, semi group, Monoid
= Permutation groups
= Cosets and Lagrange's theorem

= Homomorphism, Isomorphism and Automorphism of Groups

= Rings, integral domains and field.

INTRODUCTION:

In this chapter, we will study, binary operation as a function, and two more algebraic

e because the

structures, se groups. They are called an algebraic struc

set. We also define

operations o cture on the elements of

the notion of ts of groups and semigroup.

BINARY OPERATION

A binary operation on a set A is an everywhere defined function f : Ax A— A, generally
the operation is denoted by * on A, then a*be A Va, b e A.
Properties of binary operation : Let *
be a binary operation on a set A,
Then = satisfies the following
properties, namely
e Closure property
e Associative property
e Identity Property
e Inverse property

e Commutative property etc.



SEMIGROUP

A non-empty set S together with a binary operation =* is called as a semigroup if —
)} binary operation * is closed
i) binary operation * is associative
we denote the semigroup by (S, *)

Commutative Semigroup :- A semigroup (S, =*) is said to be

commutative if * is commutative i.e. a*b=b=*avaeS$S

Examples: 1) (z, +) is a commutative semigroup

2) The set P(S), where S is a set, together with
operation of union is a commutative semigroup.

3) (Z, -) is not a semigroup
The operation subtraction is not associative

ement ifexa=a*e=aae$S

Monoid A non-empty with a binary tion *defined on

it, is called as a monoid if =

i) binary operation * is closed

i) binary operation * is associative and

iii) (M, =) has an identity.

i.e. A semi group that has an identity isa monoid.

A a non-empty set G together with a binary operation = defined on it is
called a group if

0] binary operation * is close,

(i) Dbinary operation = is associative,
(iii)) (G, *) has an identity,

(iv)  everyelementin G has inverse in G,
We denote the group by (G, *)

Commutative (Abelian Group : A group (G, =*) is said to be
commutative if * is commutative. i.e. a*b=b*a Va, beG.

Cyclic Group : If every element of a group can be expressed as the power
of an element of the group, then that group is called as cyclic group.



The element is called as generator of the group.
If G is a group and a is its generator then we write G=<a>
For example consider

G={,-Li,-i}. G is a group under the binary
operation of multiplication. Note that G =<i >. Because

a={ii?,i%,i*}={i-1-i1)
SUBSEMI GROUP :

Let (S, *) be a semigroup and let T be a subset of S. If T is closed under operation *,
then (T, =) is called a subsemigroup of (S, *).

Submonoid : Let (S, *) be a monoid with identity e, and let T be a non- empty subset
of S. If T is closed under the operation * and e € T, then (T, *) is called a
submonoid of (S, *).

Subgroup : Let (G, *) be a group. A subset H of G is called as subgroup of G if (H, *)

itself is .
-
Necessary a ion for subgroup : L;W be anroup. A
subset ( if and only ifva,beHa*b™ " eH
: : ____-ﬂ' i
PERMUTATION GROU - g

=

bols is a bijg_gﬁ-v'é'?-l]-r:ction of the set

ermutations on n symbols is

Definition : A permuta
A={l,2,..n}onto itself. The
denoted by S,. If ais a permutation on n symbols, then o is completely

determined by its values o (1), a(2).....o(n). We use following notation

1 2 3 ... n o)

a(l) a(l) o(3)... a(n)}

(
to denote OLL

1234

531 2
(1,2,3,45). o maps1to5,2to3,3to1,4to2and5to 4.

5 .
For example o 4 denotes the permutation on the 5 symbols

Product of permutation : - Let A = {1,2,3,4}
12314 12314
Let o and B .
3241 43 21
1234\(12314 12314
Then o OB = =
3241)43 21 231 4

Cycle - an element aes, is called a cycle of lingth r if 3 r symbols



Il, |2....|n0(. (Il) :|2, (X(|2)=i3 s (l(in)le.
Example : Consider following permutation

. 123456
)} o
(234165

a@j ; f)(z 3:(1 2 3 4)(5 6)

Transposition :

J. It can be expressed as a product of cycles -

A cycle of length two is called transposition.

For example following permutation can be expressed as a product
of transpositions.

@ (1837)(25)(46)
-a(18)(13)(27)(25)(46)

A permutation o €S, Is even.or odd according
essed-as the produ an even number of

gdd"‘ﬁumber of transpositions

transpositia
respectively.

For example we can

a=(145)(2 3)
a=(14)(15)(2 3)
= odd no. of transpositions so o is odd permutation

Example 1 : Show that * defined as x#*y=xis a binary operation on the
set of positive integers. Show that = is not commutative but is associative.

Solution : Consider two positive integers x and y. By definition x*y=x
which is a positive integer. Hence - is a binary operation.

For commutativity : x*y=x and y#*x=x. Hence x*y=y=*xin general
. * IS not commutative.

But X*(y*2)=X*y=X and (x*y)*z=Xx*z=X. Hence
x*(y*z)=(x*y)*z. .. * isassociative

Example 2 : Let | be the set of integers and Z, be the set of equivalence
classes generated by the equivalence relation “congruent modulo m” for
any positive integer m.



a) Write the sets Z3 and Zs

b) Show that the algebraic systems (Zm, + m) and (Zn, x m) are
monoids.

C) Find the inverses of elements in Z3 and Z, with respect to +3 and x4
respectively.

Solution : a) Zs for (Zs,+ 3) ={[0], [1], [2]}
Zg for (Ze, + 6) = {[01, [1], [2], [3], [4], [5] }
Zs for (Zs,x 3) ={[0], [1]. [2]}
Zg for (Zs,x 6) = {[0], [1], [2], [3], [4], [3] }

Example 3 : Determine whether the following set together with the binary
operation is a semigroup, a monoid or neither. If it is a monoid, specify the
identity. If it is a semigroup or a monoid determine whether it is
commutative.

i) A = set of all positive integers.
a*b =max{a,b} i.e. bigger of a and
b

i) SetS={1, 2, 3,6, 12} where a*b=G.C.D.(a,b)

V) 6 gers E, where -
= 2 i

vi) Set of real F=a+b+2

vii)  The set of all mxn P”a‘aﬂﬁn”,

of addition.

Solution :

i) A =set of all positive integers. a*b = max{a, b}i.e. bigger of a and b.

Closure Property: Since Max {a, b} is eitheraor b .. a*xbe A. Hence
closure property is verified.

Associative Property :

Since a* (b *c) = max{{a, b},c} = max {a,b,c}
= Max{a,{b, c} } = (a.b).c

", * Is associative.

- (A, =) isasemigroup.

Existence of identity : 1 € A is the identity because
la=Max{la}=a VaeA

- (A, *) isa monoid.

Commutative property : Since Max{a, b) = max{b, a) we have
a*b=Db=aHence * is commutative.

Therefore A is commutative monoid.



i) SetS={1,2,36,12} where a*b=G.C.D. (a,b)
*|1 2 3 6 12

1

2

N P N PN
oo W N

1
1
3
3

oo W N

6
12 2 3 6 12

Closure Property : Since all the elements of the table € S, closure
property is satisfied.

1
1
1
1
1

Associative Property :Since
a*x(bxc)=ax*(b*c)=a*GCD{b,c}=GCD {a,b,c}
And (a=*b)*c=GCD{a,b}*c=GCD{a,b,c}
wax(bxc)=(axb)*c
. * IS associative.
- (S, *) is asemigroup.

18

6

6 18
6 18 18
6

6

9 18
18 18
18 9 18
18/ 18 18 18 18 18 18

Closure Property : Since all the elements of the table € S, closure
property is satisfied.

Associative Property : Since a*(b*c)=a*LCM{b,c}=LCM{a,b,c}
And (a*b)*c=LCM{a,b}*c=LCM{a,b,c}

a*(bxc)=(axbh)*c

* IS associative.

(S, *) is a semigroup.



Existence of identity : From the table we observe that 1 € S is the
identity.

(S, *) is a monoid.

Commutative property : Since LCM{a, b} = LCM{b, a} we have
a*b=b=*a. Hence * is commutative.

Therefore A is commutative monoid.
(iv)  Z, the set of integers where -a*b=a+b-ab

Closure Property : - a,bez then a+b—-abez Vab
so * is closure.

Associate Property : Consider a,bez
(a*b)*c=(a+b-ab)*c
—a+b-ab+c—(a+b-ab)c

=a+b-ab+c-ac-bc+abc (1)
=a+b+c-ab-ac-bc+abc

(2From1 & 2
(a*b)*c = a*(b
. * is associative
~.(z, &) is a semigroup.

Existence of Identity : Let e be the identity elementa*e =q

ate-ge=a
ate-ae=a
e(l-a)=0
e=0ora=1
But a=1l
E=0

. OeZ is the identity element.
~.(Z,*) is monoid.

Commutative property : Va,bez
a*b=a+b-ab
=b+a-ba
=b*a
. * Is commutative
. (Z, *) is commutative monoid.

OeZ is the identity



V) E = set of even integers. axb= ab

Closure Property : Since
azb is even for aand b even. .. a*beE. Hence

closure property is verified.

Property : Since a * (b *c):q*(%):aTbC =%b xC=(a*b)*c

* IS associative. ~.(E, *) is a semigroup.

Existence of identity : 2€ E is the identity because 2*a = 2—:= avacekE

~.(E, *) isamonoid.

Commutative property : Since a_zb:bz_a, we have a*b=Db=*aHence * is

commutative.

is commutative monoid.

Example 4 : State and ‘bro
group.

ncellation property for a

Solution : Let (G, =) be a group.
(1 To prove the right cancellation law i.e. a*b=c*b=a=c
Let a, b, ceG. Since G is a group, every element has inverse in G.
~bleG
Consider a*xb=c#b
Multiply both sides by b from the right.

(axb)*b ™t = (cxb)xbt

ax(bxbh)=cx(b*bl) Associative property

gxa=ex*C bxbl-ecG



a=c eeG is the identity

(i)  To prove the left cancellation law i.e. a*b=c*b=a=c
Let a, b, ceG: Since G is a group, every element has inverse in G.
nateG
Consider ax*b=axc
Multiply both sides by a* from the left
at *(axb) = a ™t * (a*C)
(@lxa)xb=(alxa)=c Associative property
exb=exc alra=ecG
b=c eeG is the identity

Example 5 : Prove the following results for a group G.

0] The identity element is unique.

(i)  Eachain G has unique inverse a *

(iii) (ab) ' =b'a’

From (1) and (2) we get e; = €3'1'€. identity element is unique.
(i)  Let G be a group. Let b and c be two inverses of acG.
Ifbisaninverse ofathenab=ba=e............... Q)
Ifcisaninverse ofathenac=ca=e............... (2)

Where e € G be the identity element.

From (1) and (2) we get ab = ac and ba = ca.

b=c by cancellation law : i.e. inverse of aeG is unique.

. inverse of a € Gis unique.
(ili) Let G beagroup. Leta, b € G.
Consider (ab)(b'a™)

a(bbha’  Associative property

(ae)a™ bb'=e, ecG is identity

(ae)a™ Associative property

= aale=a

= gaal=¢e



Similarly we can prove (b 'a‘)(ab) = e.
Hence (ab) *=b*a™

Example 6 : Let G be a group with identity e. Show that if a®=e forallain G,
then every element is its own inverse

Solution : Let G be a group.

Given a’= e for all acG. Multiply by a™

we get ala? = ale

a=a"
i.e. every element is its own inverse

Example 7 : Show that if every element in a group is its own inverse, then the group must
be abelian.

OR

Let G be a group with identity e. Show that if a? = e for all a in G, then G
is abelian.

G be a group.

(ab) '=b
ab=ba every eleme

G is abelian.

Example 8 :Let Z, denote the set of integers (0, 1, .., n-1). Let ® be binary operation
on Z, such that a®b = the remainder of ab divided by n.
i) Construct the table for the operation ® for n=4.
i) Show that (Z,, ®) is a semi-group for any n.
iii) Is (Zn, ®) a group for any n? Justify your answer.

Solution : (i) Table for the operation ® for n = 4.

®[0 1 2 3
0[O0 0 0 O
110 1 2 3
210 2 0 2
310 3 2 1

(i)  To show that (Z,, ®) is a semi-group for any n.

Closure property : Since all the element in the table
€{0, 1, ..., n-1}, closure property is satisfied.



Assiciative property : Since multiplication modulo n is associative,
associative property is satisfied.

(Z,, ®) is a semi-group
(i)  (Z,, ®) is not a group for any n.

Example 9 : Consider the group G = {1,2,3,4,5,6} under multiplication
modulo 7.

(1) Find the multiplication table of G

(i) Find2* 3% 6"

(iii)  Find the order of the subgroups generated by 2 and 3.

(iv)  IsG cyclic?

Solution : (i) Multiplication table of G
Binary operation * is multiplication modulo 7.

*11 2 3 4 5 6

1 2 3 456
2{2 4 6 1 3 5
3|3 6 2 51 4
4141 5 2 6 3
5[5 3 1 6 4 2

O RN

From the

(i) Tofind2* 36
From the table we ge

iii)  To find the order of the subgroups generated by 2.
Consider 2° = 1 = Identity, 2" = 2; 2= 4, 2° = 1 = Identity
<2>={2' 22 2%
Order of the subgroup generated by 2 =3
To find the order of the subgroups generated by 3.
Consider 3° = 1 = identity, 3' = 3,3°=2,3°=6,3'=4,3°=5,3°=
1 = Identity
<3>={3" 3 33" 3° 3%
Order of the subgroup generated by 3 =6

(iv)  Giscyclic because G =<3 >.



Example 10 : Let G be an abelian group with identity e and let H = {x/x?
=e). Show that H is a subgroup of G.

Solution : Letx, yeH .x*=eandy’=e .. x'=xandy'=y
Since G is abelian we have xy = yx .. xy ' = yx
Now (xy)* = (xy)xy™") =(xy )y ™)
(xy )(yx) = Xy y)x
= x(e)x
= xy'eH
H is a subgroup.

Example 16 : Let G be a group and let H = (x/xeG and xy = yx for all
yeG}. Prove that H is a subgroup of G.

Solution : Letx,z e H .. xy = yxfor every yeG .. X = yxy .
Similarly zy = yz for every yeG nz=yzy

Now consider xz* = (yxy H(yzy D) *

= yyyzlyeyxzy
xz)y=y(xz') e H.

Example 17 : Find®

a the operation
addition modulo 5. Justif

Solution:

N w NN PR OoOl®

A W N P OO
o A WO N PP
P O B W NN
N kP O & W|lW
w NN P O M

Example 18 : Let G be a group of integers under the operation of
addition. Which of the following subsets of G are subgroups of G?

@ the set of all even integers,

(b) the set of all odd integers. Justify your answer.



Solution:
a) Let H= set of all even integers.
We know, additive inverse of an even number is even and sum of

two even integers is also even. Thus for a,beH we have ab *eH.
Hence H is a subgroup of G.

b) Let K = set of all odd integers.

We know, additive inverse of an odd number is odd and sum of
two odd integers is even.

Thus for a,beK we have ab™*¢K.
Hence K is not a subgroup of G.

Example 19 : Let (G, *) be a group and H be a non-empty subset of G.

Show that (H, =) is a subgroup if for any aand b in H, ab " is also in H.

Solution :
() LetaaeH aa'eH ieeeH
The identity element € H.

(ii)
(iii)

~.Closure"pro
(iv) Every element in

property is satisfied Dby )
property is satisfied by the ele

Hence H is a group. But H is a subset of G. ..H is a subgroup
of G.

Example 20 : Let H and K be subgroups of a group G. Prove that HNK is
a subgroup of G.

Solution : If H is a subgroups of a group G, then for any a, b € H,
ab' e H.

Similarly, if K is a subgroups of a group G, then for any a, b € K,
ab™t e K.

Now ifa,b e HNK,a,b e Handa, b e K. . abt e Hand ab* € K.
Hence ab* € HNK.

HNK is a subgroup of G.



HOMOMORPHISM, ISOMORPHISM AND
AUTOMORPHISM OF SEMIGROUPS

Homomorphism : Let (S, *) and (T, *’) be two semigroups. An
everywhere defined function

f: S—>T is called a homomorphism from (S, =) to (T, *’) if
f(axb) =f(a) =’f(b) Va,be$S

Isomorphism : Let (S, *) and (T, *’) be two semigoups. A function

f: S — Tis called a isomorphism from (S, *) to (T, =’) if

0] it is one-to-one correspondence from Sto T (ii) f(axb) = f (a)
*’f(b) Va,be S

(S, *)and (T, =) are isomorphic’ is denoted by S=T.

Automorphism : An isomorphism from a semigroup to itself is called an

automorphism of the semigoup. An isonorptism f:s—s | s
automorphism.

called

HOMOMORPHISM, LSOMORPHISM AND AUTOMORNHISM OF MONOIDS :

Homomorphism : Let (M, =) and (M’, =’) be two monoids. An
ined functlon f: M — M’ is called a homomorphism from
a * b)=f(a) »’f(b) Va,be M

’) be tw_g.-frronmds A functlon

(i) itis one-to-one corre
(iii) f(axb=f(a) =’f(b) Va, beM

‘(M =) and (M’, %) are isomorphic is denoted by M = M’.

Automorphism :An isomorphism from a monoid to itself is called an automorphism

of the monoid. An isomorphism f:M—Mis called automorphism

of monoid.



HOMOMORPHISM, ISOMORPHISM AND AUTOMORPHISM O F GROUPS :

Homomorphism : Let (G, *) and (G’, =) be two groups. An everywhere
defined function f: G — G’ is called a homomorphism from (G, *) to (G’,
+7) if

f(axb)=f(a) *’f(b) Va,be G

Isomorphism : Let (G, =) and (G, =) be two groups. A function
f: GG’ is called a isomorphism from (G, *) to (G’, *°) if

0] it is one-to-one correspondence from G to G’ (ii) f is onto.
(iii) f(a = b)="f(a) =’f(b) Va, beG

(G, *) and (G’, *”) are isomorphic’ is denoted by G = G’.

Automorahism: An isomorphism from a group to itself is called an
automorphism of the group. An isomorphism f:G— G is called
Automorphism

Theorem : Let (S, *) and (T, *’) be monoids with identity e and e’,
respectively. Let f: S — T be an isomorphism. Then f(e) =e’.

Proof : Let b be any element of T. Since f is on to, there is an element a in

Thus for any ,beT, 1 i
b=bx'f(e)="f(e)*'b

which means that f(e) is an identity for T.
Thus since the identity is unique, it follows that f(e)=e’

Theorem : Let f be a homomorphism from a semigroup (S, *) to a semigroup
(T, *7). If S” is a subsemigroup of (S, =), then F(S’) = {t € T | t = f (s) for some s
e S}, The image of S’ under f, is subsemigroup of (T, =°).

Proof : If t;, and t, are any elements of F(S”), then there exist s; and s, in S’ with
t = f(sy) and t, = (s,). Therefore,

toxt, = f(s)* f(s,)=f(s *s,)=f(s,*5)="F(s,) = f(s5)) =1, *t;

Hence (T, =) is also commutative.

Example 1 : Let G be a group. Show that the function f: G — G defined
by f(a) = a is a homomorphism iff G is abelian.



Solution :

Step-1_: Assume G is abelian. Prove that f : G — G defined by f(a) = a° is
a homomorphism.

LetabeG. .. f(a) =a’, f(b) = b and f(ab) = (ab)? by definition of f.
: f(ab)=(ab)?

= (ab)(ab).
= a(ba)b associativity
a(ab)b G is abelian
(aa)(bb) associativity
= a’b?
= f(a)f(b) definition of f
.. fis a homomorphism.

Step 2:
Vy=a?eG JacGst

f(a)=y=a"

Step- G defined by f(a) = a® s a_homomorphism.

Prove

(ab)(ab) = (aa)(bb) |
a(ba)b = a(ab)b associativity

ba = ab left and right cancellation taws
G is abelian.

Example 3 : Let G be a group and let a be a fixed element of G. Show
that the function f_ :G — Gdefined by f_(x)=axa‘for xeG is an
isomorphism.

Solution :
Step-1: Show that fis 1-1.
fa (x) = axa 1
Consider fy(x) = fa(y) forx,y eG
: axa - =aya ' definition of f
X=Yy left and right cancellation laws

fisl-1



Step 2 :

Vy=axa teGIxeGst.
fo(x) —axa’
-.fis onto.

Step-3_ Show that f is homomorphism.

For x, yeG

f(x)=a*x*a_1, f(y)=ax= y*a_1 and f(x= y)=a*(x*y)*a_1

Consider f(x*y)=ax*(x*y)*a t for X, yeG

f(xxry)=a*x(x*xex y)*a_1

1

eeG is identity
A

= ax(x*a"

*a*y)*a_ a “*a=¢e




= (a*x* a_l) *(axy* a_l) associativity

#f(xxy)=1(x)* f(y)
f is homomorphism.
Since fis 1-1 and homomorphism, it is isomorphism.

Example 2 : Let G be a group. Show that the function f: G — G defined
by f(a) = a* is an isomorphism if and only if G is abelian.

Solution :

Step-1; Assume G is abelian. Prove that f : G — G defined by f(a) = a " is
an isomorphism.

) Let f(a)=f(b)

sat=p? ~a=bh ~fis1-1.
i) VaeG=aleG
xteG

= a’, f(b) = b" and f(ab) = (ab) * by

sversal law of inve
G is abelian
definition of f.

S f is @ homomorphism.
Since fis 1-1 and homomorphism, it is isomorphism.

Step — 2_: Assume f : G — G defined by f(a) = a* is an isomorphism.
Prove that G is abelian.

Leta,beG  ..f(a) =a*, f(b) = b ' and f(ab) = (ab) * by definition of f

f(ab) = f(a)f(b) f is homomorphism

(ab)y*=a'bt definition of f

blat=a'b™ reversal law of inverse
G is abelian.

Example 3 : Define (Z, +) — (5Z, +) as f(x) = 5x, where 5Z=(5n: n e
Z). Verify that f is an isomorphism.

Solution:
Step -1 Show that fis 1-I.

Consider f(x) = f(y) for x, yeG
: 5x = by definition of f
X=y ~ofis1-1



Step 2 :
V5hxeG,3Ix eG
s.t.f(x) =5x

-.fis onto.

Step-3: Show that f is homomorphism.

For xxyeG

f(x) = 5x, d(y) = 5y and f(x + vy) —
5(x+y)

Consider f(x+y) = 5(x+y) forx,y eG

= 5X + 5y

f(x+y) = f(x) + f(y)
f is homomorphism.
Since fis 1-1 and homomorphism, it is isomorphism.

Example 4 : Let G be a group of real numbers under addltlon and Iet G’

Show that the
the set of real numB

Solution :

Step 1:Show that fis 1-1.

Consider f(x) = f(y) for x,yeG
: ef=¢ definition of f
X=y o Fis1-1.

Step 2 : If xeG!, thenlog x € G and f(.log x)=e'°gx =x so fis onto.



Step-3_: Show that f is homomnrphism.
For x, yeG
f(x) = €, f(y) = ¢” and f(x+y) = e**¥
Consider f(x +y) =  e**Y forx,y eG
= e*xe¥

f(x +y) = f(x) x f(y) fis homomorphism.
Since fis 1-1 and homomorphasm, it is isomorphism.
Example 5 : Let G = {e, a, a%, a°, a*, a°} be a group under the operation
of a'a' =a’, where i +j=r(mod 6). Prove that G and Zs are isomorphic

Solution :
Step - 12 Show that fis I-1.
Lletx=a',andy=4a .

Consider f(x) = f(y) forx,ye G
f(a') = f(@) definition of f
al=a
X=y fis1-1.

f(a) + f(d)
f(x xy) = f(x) + (y)
Since fis 1-1 and homomorphism, it is isomorphism.

Example 6 : Let T be set of even integers. Show that the semigroups (Z,
+) and (T, +) are isomorphic.

Solution : We show that f is one to one onto .
Define f: (Z, +) — (T, +) as f(x) = 2x
1) Show that fis I-1

Consider f(x) = f(y)

L2X =2y

SX=yY ~fis 1-1.

2) Show that f is onto
y =2x ..X =Yy/2 when yis even.
..for every yeT there exists xeZ.
~.fis onto.
.. is isomorphic.




3) F is homorphism

Fix+y)=2(x+y)
=2X + 2y

=1(x) + f(y)
.. fis honomorphism.

Example 7 : For the set A = {a,b,c} give all the permutations of A. Show
that the set of all permutations of A is a group under the composition
operation.

Solution : A={a,b,c}. Ss= Set of all permutations of A.

c f_abc f_abc

c) 1la ¢ b))’ 2 (¢ b a

C a b c a b
y f: y f:

cj 4(bca) 5(ca

Let us prepare the composition table.

—
o
I
7~ N\
SUR U
» T T T

S o
—

o|f, f, f, f. f, f
b+ T S
iy fofs f, f
' f

1 4

)} Closure Property: Since all the elements in the composition table

€S3, closure property is satisfied.

i) Associative Property: Since composition of permutations is
associative, associative property is satisfied.

iii) Existance of Identity: From the table we find that fo is the
identity

iv) Existance of Inverse: From the composition table it is clear that
fol=fo, fil=fy, f,0=0 fsi=f, f, =1, s =1,

Every element has inverse in Sz. Hence Ss is a group.

COSET AND NORMAL SUBEROUP:

Left Coset : Let (H, =) be a subgroup of (G, *). For any a € G, the set of
aH defined by aH ={a*h/heH} is called the left coset of H in G



determined by the element acG. The element a is called the representative
element of the left coset aH.

Right Coset : Let (H, *) be a subgroup of (G, ). For any a € G, the set
of Ha defined by

Ha=[h*a|heH]

is called the right coset of H in G determined by the element acG. The
element a is called the representative element of the right coset Ha.

Theorem : Let (H, =) be a subgroup of (G, ). The set of left cosets of H
in G form a partition of G. Every element of G belongs to one and only one
left coset of H in G.

Lagrange’ Theorem: The order of a subgroup of a finite group divides
the order of the group.

Corollary : If (G, *) is a finite group of order n, then for any aeG, we
must have a"=e, where e is the identity of the group.

Normal Subgroup : A subgroup (H, *) of (G, *) is called a normal
subgroup if for any a€G, aH = Ha.

Example 8 : Determine all the proper subgroups of symmetric group (Ss,
0). Which of these subgroups are normal?

S; = Set of all permutations of S.



Let us prepare the composition table.
off

0 1 f2 f3 f4 f5
ol f, T, f5 f, T
0l f, f, fo £, f
f |, £, T, f, T, f
|t f, f f, £ 1,
flf, f3 f f,
|t £, T, f T T,

From the table it is clear that {fo, fi}, {fo, f2,}, {fo, f3) and {fo, 4, fs} are
subgroups of (Ss, 0): The left cosets of {fo, f;} are {fo, f1}, {f2, fs}, {fs, f4}.
While the right cosets of {fo, f1} are {fo, fi}, {f2, T4}, {fs, fs}. Hence {fo,
f1} is not a normal subgroup.

Similarly we can show that {fo, f2} and {fo, f;} are not normal subgroups.
On the other hand, the left and right cosets of {fo, f4, fs} are {fo, fs4, fs;} and
{f,, f2, f3}.

Hence {foufs, fs} is @ nomal subgroup.

group of all

2, 3}. Let G = S3 be
lon of composition of

under the oper

2 3 .
(3 ) 1).Find the left coset of Hip H a normal subgroup? Explain

your notion of composition clearly.

Solution : Let

12 3 12 3 1
, f1= , f3=
12 3 1 3 2 3

12 3 123 1
fo= , f, = R A
3(213] 4(231} 5(3

H:{fo, fz}

f

0

N N NN DN



Left Cosets of Hin G_

foH = {fofo, fofg} = {fo, fg} f]_H = {flfo, f]_fz} = {f]_, f4}
foH = {fzfo, fzfz} = {fz, fo} fsH = {fsfo, fsfz} = {fs, fs}
fsH = {f4fo, f4f2} = {f4, fl} fsH = {fsfo, fsfz} = {fs, fs}

Right Cosets of Hin G
Hfo = {fofo, f2fo} = {fo, f2} Hfy = {fofy, 1 }={f1, fa}
Since f; H = Hf; , H is not a normal subgroup of G.

Example 10 : Define a normal sub-group. Let S; = Group of all
permutations of 3 elements (say 1, 2, 3). For the following subgroups of S,
find all the left cosets . Subgroup of A = {1,(1,2)}

Where | = identity permutation, (1, 2) is a transposition. Is A a normal
subgroup. State a normal subgroup of the above group if it exists.

Solution : H = {fo, f3}
The left cosets of H in G are as follow.

foH = {fo, f3} f1H = {fl, f5} sz = {fz, f4}
f3 = {f3, fo} f4H = {f4, f2} f5H = {f5, fl}
: Hf, = {f, fs} -

Since | a normal subgroup of G. _

RING: An algebral s said to be a__B.ing"i? it satisfies

ibutive property:”

-’

FIELD: An algebraic structure (F, +, 0) IS'saigkto™e a Field if it satisfies :
o (F, +) isa commutative Group.
e (F, 0) isa commutative group and
o (F, +, o) satisfies the distributive property.

Zero Divisor: A commutative ring is said to have a zero divisor if the product of two non-
zero element is zero. For example, the product of two non- zero matrices may zero.

INTEGRAL DOMAIN: A commutative without a zero divisor is called an integral
domain.

THEOREM: Every finite integral domain is a field.

THEOREM: Every field is an integral domain.



unit 1V

LATTICE THEORY, BOOLEAN ALGEBRA AND
CODING THEORY

OBJECTIVES:

After going through this unit, you will be able to :

" Define basic terminology associated with lattice theory.
. Boolean lattices and Boolean algebras
. Coding theory

LATTICES

BASIC TERMINOLOGY

Definition:

A poset is a lat elements has a lub (join) and a glb (me
Least upper bound (lu
Let (A, <) be a poset and B be a
1. Anelementa < A is an upper bound for

for every elementa’'c B, a' <a.

2. Anelement ac A is a least upper bound (lub) for B iff a is an upper bound for B and
for every upper bound a' for B, a<a'.

Greatest lower bound (glb)
Let (A, <) be a poset and B be a subset of A.
1. Anelementa ¢ A isalower bound for B iff for every elementa’'c B,a< a'

2. An element a € A is a greatest lower bound (glb) for B iff a is a lower bound for B
and for every lower bound a' for B, a'<a.

Theorem:
Let (L, <) be a lattice, Forany a, b, ce L,
(i) a*a=a(i)a +a=a (idempotent)

(i1) a*b=b*a (ii') a + b = b + a (Commutative)

(iii) (@*b)*c=a*(b*c) (iii") (a + b) + c =a + (b + ¢) (Associative)



(iv) a*(at b) =a (iv') a + (a*b) = a (Absorption)
Theorem:

Let (L, <) be a lattice for any a, b <L, the following
property holds.
A< b&a*h=a<a+b=b

Theorem:

Let (L, <) be a lattice, for any a, b, ce L, the following

properties hold.
B<c=>a*h<a*c,a+ b<a+c

Theorem:

Let (L, <) be a a, b, ce L, the following

properties hol
as<b”™a<

a<b”asc=>a<
b<a“c<a=>b*c<a
b<a“c<a=>b+c<a
Theorem:
Let (L, <) be a lattice, For any a, b, ce L, the
following inequalities hold.
a+(b*c)<(a+b)*(a+c)
(a*b )+ (a*c) <a*(b+c)
BOOLEAN ALGEBRA: A complemented distributive lattice is called a Boolean Algebra.
Theorem:
Let (A, *, +) be an Boolean algebra which satisfies the

1. Idempotent law, (a*a=a, a+a=a)



2. Commutative law, (a*b=b*a, a+b=b+a)
3. Associative law, ( (a*b)*c=a*(b*c), (a+b)+c=a+ (b +¢)
4. Absorption law (a*(a+b) =a,a + (a*b) =a)
Then there exists a lattice (A, <), such that * is a glb, + is a lub,
and is < defined as follows:

X <y iff x*y = x

X<yiff x+y=y

Definitions
Algebraic system :A lattice is an algebraic system (L, *, +) with two binary operations
*and + on L which are both (1) commutative and (2) associative and (3) satisfy the
absorption law.

Sublattice : Le

be a lattice and let S be a subset of L. The algebra (S, *, +) is a
s closed under both operations * and +.

e

orp ",\_/)_beftha lattice. A mapping g:L—S is

called a lattice homon L, * +) to (S, 2 Myifforanya, bel,
g(a*b) = g(a) " g(b) and'e (@) V g(b)u

Order-preserving_: Let (P, <) and (Q, <) b&Wo partially ordered sets, A mapping

f: P — Q is said to be order-preserving relative to the ordering <in P and <'in Q iff for
any a, be P such that a < b, f(a) <' f(b) in Q.

Complete Lattice: A lattice is called complete if each of its nonempty subsets has a
least upper bound and a greatest lower bound.

Greatest and Least elements

Let (A, <)>be a poset and B be a subset of A.

1. Anelement a € B is a greatest element of B iff for every elementa‘'e B, a' < a.
2. Anelement a € B is a least element of B iff for every elementa'e B,a<a'.
Least upper bound (lub)

Let (A, <) be a poset and B be a subset of A.

1. Anelementa < A is an upper bound for B iff for every elementa'c B, a'<a.

2. Anelementa A is a least upper bound (lub) for B iff a is an upper bound for B and
for every upper bound a' for B, a<a'.



Greatest lower bound (glb)
Let (A, <) be a poset and B be a subset of A.
1. Anelementa < A is a lower bound for B iff for every elementa'e B,a<a'.

2. Anelement a € A is a greatest lower bound (glb) for B iff a is a lower bound for B
and for every lower bound a' for B, a' < a.

Maximal and Minimal Elements:_Let (A, R) be a poset. Then a in A is a_minimal
element if there does not exist an element b in A_such that bRa. Similarly for a maximal
element.

Upper and Lower Bounds

Let S be a subset of A in the poset (A, R). If there exists an element a in A such that sRa for all s
in S, then a is called an upper bound. Similarly for lower bounds.

Bounds of the lattice :The least and the greatest elements of a lattice, if they exist, are called the
bounds of the lattice, and are denoted by 0 and 1 respectively.

Bounded lattice: In a bounded lattice (L, *, +, 0, 1), an element be L is called a
complement of an.element a e L, if a*b=0,

a+b=

Complemented"
element of L has at le

a complemented lattice if every
Distributive lattice :A lattice
L, a*(b + ¢) = (a*b) + (a*c) + (b*C

attice if forany a, b, ce

EXAMPLE:
Construct the Hasse diagram of (P({a, b, c}), < ).
The elements of P({a, b, c}) are

¢

{a}, {b}, {c}

{a, b}, {a, c}, {b, c}

{a, b, c}

The digraph is



In the above Hasse diagram, ¢ is a minimal element and {a, b, c} is a maximal element.
In the poset above {a, b, c} is the greatest element. ¢ is the least element.

In the poset above, {a, b, c}, is an upper bound for all other subsets. ¢ is a lower bound
for all other subsets.

{a, b, c}, {a, b}

and {a} are upper bounds and {a} is related to all of them, {a}

must be the |
EXAMPLE:
In the poset (P(S), <), lub(A, B hé glb(A, B)?
5
2 4
1 3
Solution:

Consider the elements 1 and 3.
» Upper bounds of 1 are 1, 2, 4 and 5.
* Upper bounds of 3 are 3, 2, 4 and 5.
* 2,4 and 5 are upper bounds for the pair 1 and 3.

* There is no lub since



- 2 is not related to 4

- 4 is not related to 2

- 2 and 4 are both related to 5.
* There is no glb either.

The poset isn ot a lattice.

EXAMPLE:

Determine whether the posets represented by each of the following Hasse diagrams have
a greatest element an a least element.

b c d d £ d d
\f/ X /K aoc
a a ¢ i b a

Solution

* The least element of the pose . This poset has no greatest

element.
* The poset with Hasse diagram (b) has neiter a least nor a greatest element.

* The poset with Hasse diagram (c) has no least element. Its greatest element is d.
* The poset with Hasse diagram (d) has least element a and greatest element d.
EXAMPLE:

Find the lower and upper bounds of the subsets {a, b, c}, {j, h}, and {a, c, d, f } and find
the greatest lower bound and the least upper bound of {b, d, g}, if they exist.



Solution

The upper bounds of {a, b, c} are e, f, j, h, and its only lower bound is a.

There are no upper bounds of {j, h}, and its lower bounds are a, b, c, d, e, .

The upper bounds of {a, c, d, f } are f, h, j, and its lower bound is a.

The upper bounds of {b, d, g} are g and h. Since g _ h, g is the least upper bound.
The lower bounds of {b, d, g} are aand b. Since a _ b, b is the greatest lower bound.
EXAMPLE:

Determine whether the posets represented by each of the following Hasse diagrams are
lattices.

T i f
I3 i £ f
[ o
b b fs
. / » o
ia) ib) {c) -

Solution

ms in (a) and«(c) are both lattices because in
least.upper bound and a greatest lower

The posets represented by the
each poset every pair of elements has
bound.

On the other hand, the poset with the Hasse diagram shown in (b) is

not a lattice, since the elements b and ¢ have no least upper bound. To see this note that
each of the elements d, e and f is an upper bound, but none of these three elements
precedes the other two with respect to the ordering of this poset.

EXAMPLE:
Determine whether (P(S ), <) is a lattice where S is a set.
Solution

Let A and B be two subsets of S . The least upper bound and the greatest lower bound of
A and B are A U B and A NB, respectively.

Hence (P(S), < ) is a lattice.



CODES AND GROUP CODES
INTRODUCTION :

In today’s modern world of communication, data items are
constantly being transmitted from point to point.

Different devices are used for communication. The basic unit of
information is message. Messages can be represented by sequence of
dots and das

Let
B ={0,1}be the set of bits. Every character or symbol can be

represented by sequence of elements of B. Message are coded in O’s and 1’s
and then they are transmitted. These techniques make use of group theory. We
will see a brief introduction of group code in this chapter. Also we will see the
detection of error in transmitted message.

B ={0,1} is a group under the binary operation @® whose

The set
table is as follows :

@|01 -

0 1
-
E—

__..r"

=0 ‘____-"
It follows from theorem - “If G; and G, are groups then

G=G;xG, is a group with binary operation defined by

(a3,b1)(az,by)=(ag,az,by,by). So B™ =BxBx...xB (m factors) is

a group under the operation @ defined by

(X1, X5 ____xm)(-D(yl, Yy ym)z(x1+y1, Xy + Yo Xm + Y )

observe that B™ has 2™ elements. i.e. order of group B™ is 2™,

We have seen that B isa g

Important Terminology :
Let us choose an integer n>mand one-to-one function

e:BM —>Bn.

1) Encoding Function :
The function e is called an (m, n) encoding function. It means

that every word in B™ as aword in B".



2) Code word :
If beB™ then e(b) is called the code word

3) Weight :

For x B the number of 1°s in x is called the weight of x and is
denoted by | X .

eg. i) x=10011eB® - w(x)=3
ii) x=001eB3 - w(x)=1

4) X®y— Let x,yeBn , then x @y is a sequence of length n that




has 1’s in those positions x & y differ and has O’s in those positions x
& y are the same. i.e. The operation + is defined as0+0=0 0+1
=1 1+1

=01+0=1

e.g. if x,yeB5
x=00101y=10110
L X@y=10011
SW(xey)=3

5) Hamming Distance :
Let x,y eB™. The Hamming Distance 5(x,y) between x and y is
the weight of x@y. It is denoted by [x@y|. e.g. Hamming distance

between x & y can be calculated as follows : if x = 110110, y = 000101
x@y =110011 50 [xDy| = 4.

6) Minimum distance :
Let X,y eB".then minimum distance = min {d(x,y)/x,yeB”}.

e the corresponding received y_v_oﬁd'."ﬁen Y =Xy

€ for k =_H1_[k_2-r’--- n. This crl_terla is
known as =

7) Detection of err@ -
Let e:B™ »B" (m< 1 difig function then if minimum
distane of e is ( k + 1) then it can detect k or fewer errors.

8) Correction of errors :
Let e:B™ —B" (m<n)is an encoding function then if minimum
distance of e is (2k + 1) then it can correct k or fewer errors.

Weight of a code word : It is the number of 1’s present in the given code
word.

Hamming distance between two code words : Let x =X X,... X, and
Y=V Ys..Yy be two code words. The Hamming distance between

them, 3(x, y), is the number of occurrences such that x; = y; for i=1,m.

Example 1 : Define Hamming distance. Find the Hamming distance
between the codes.
(a) x=010000, y=000101 (b) x=001100, y=010110

Solution : Hamming distance :
(@) 8(x, y)=|x®y|=|010000 ® 000101 |=| 010101 |=3

(b) 3(x,y)=|x®y|=]001100 ® 010110 |=|011010 |=3



Example 2 : Let d be the (4,3) decoding function defined by
.p4 3
d:B" > B If y=y1¥5.. Y, d(Y)=Y1Y2 Ym-

Determine d(y) for the word y is B*.
(@) y=0110 (b) y=1011

Solution : (a) d(y)=011 (b) d(y)=101
Example 3 : Let d:B® — B? be a decoding function defined by for
Yy=Y1Yp-Yg- Thend(y)=2z12,.

where
zi=1 if {y, Yi12, Yjs4} hasat least two 1’s.

0 if {y1, Yiz2: Yisa} has less than two 1’s.
Determine d(y) for the word y in BC .
(a) y=111011 (b) y =010100
Solution : (a) d(y)=11 (b) d(y)=01
he following encoding function  f: B™ — B™ s called
the heck code. Ifb=bb,..b

define

= 1if|b| is odd.

Find e(b) if (@) b=01010 (b) b=01110



Solution : (a) e(b)=010100 (b) e(b)=011101

Example 5 : Let e: B2 - B®isan (2,6) encoding function defined as
e(00) = 000000, e(01) = 011101
e(10) = 001110, e(11) = 111111

a) Find minimum distance.
b) How many errors can e detect?
¢) How many errors can e correts?

Solution : Let Xg, Xy, X5, X3 B where Xo =000000, x; = 011101,
X, =001110,x5; =111111

W (xg ®x;)=w(011101)=4
W (xq ®x,)=w(001110)=3
W(Xg ®Xg)=w(111111)=6
w (x;®x, )=w(010011)=3
W ( X; ®xg)=Ww(100010)=2
w(x

distance is k + T
.. The function ca

e) e can correct k or fewer error inimum distance is 2k + 1.
n2k+1=2

k=1t
2

1 1.
.. e can correct —2 or less than E i.e. O errors.

GROUP CODE :

An (m, n) encoding function e:B™ — B" is called a group code
if range of e is a subgroup of B". i.e. (Ran (e), ®) is a group.

Since Ran (e) CB"and if (Ran (e),®) is a group then Ran(e) is a

subgroup of B". If an encoding function e:B™ — B" (n < n) is a group
code, then the minimum distance of e is the minimum weight of a nonzero
codeword.



DECODING AND ERROR CORRECTION :

Consider an (m, n) encoding function e:B™ — B", we require an

(n,m) decoding function associate with e as d : B" — B™.

The method to determine a decoding function d is called maximum
likelihood technique.

Since ‘Bm‘:zm.

Let x, eB™ be a codeword, k = 1, 2, ---" and the received word is y then.
Min 1sks2m{d(xk,y)}:d(xi,y) for same i then x; is a codeword

which is closest to y. If minimum distance is not unique then select on
priority

MAXIMUM LIKELIHOOD TECHNIQUE :

encoding function e: B™ — B", we often need to

determining a de B™ has 2™

elements, there are 2™
a fixed order.

o 7

If the received word is x;, we compute S(X(i)’xl) for 1<i<2™

and choose the first code word, say it is x(s), such that

o, 6 i

1<i<2M

That is, x(%) is a code word that is closest to X1 , and the first in the

list. If x(5) = e(b), we define the maximum likelihood decoding function

d associated with e by
d (Xt) = b



Observe that d depends on the particular order in which the code
words in e(B”) are listed. If the code words are listed in a different

order, we may obtain, a different likelihood decoding function d
associated with e.

Theorem : Suppose that e is an (m,n)  encoding function and d is a

maximum likelihood decoding function associated with e. Then (e,d)
can correct k or fewer errors if and only if the minimum distance of e is at
least 2k +1.

Example : Let m=2,n=5 and H= Determine the

o O Fr O R
O r Ok K
R O O L, O

group code ey B2 > B>,

SolutiongiWe have B? ={00,01,10,11}. Then e(00)=00x;X;X3

9(01) = 01X1X2 X3

where
X =01+10=0

Xy =0.1+11=1
X3=0.0+11=1
-, e(01)=01011

Next
e(10) =10% Xy X3
x =1.1+00=1
X, =11+1.0=1
X3 =1.0+0.1=0
-, e(10)=10110
e(11) =11101



[1 0 0]
011
Example :Let H= 111 be a parity check matrix. determine
1 00
010
0 0 1.
the (3,6) group code e, : B3 — B.

Solution : First find e(000), e(001), (010), e(011), e(100), e(101),
e(110), e(111).

e(000) = 000000 e (100) = 100100

e(001)=001111 e (101) = 101011

e(010) = 010011 e(110)=110111

e(100) = 011100 e(lll) =111000

Example : Consider the group code defined by  e: B2 — B®such that

e(00) = e(01)=01110  (10)=10101  e(11)=11011.

vords relative to maximum likeli decoding

Compute S(X(l),

w15

~. (01) =01110 is the code word closest to x; =11110.

. The maximum likelihood decoding function d associated with e is
defined by d(x;)=01.



(b) X =10011

Compute 5(xY x, | 00000 ©10011 |= |11101 |= 4

a(x ,xt)=|01110@10011|_|oo11o|_
(x ,xt)= 10101®11110 |=| 01011 |=3
( ,xt) 11011©10011 |= 01000 |=1

o 14

. e(11) =11011 is the code word closest to x; =10011.

. The maximum likelihood decoding function d associated with e is
defined by d(x)=11.

(€) x =10100
Compute a(x(l), X ) = 00000 10100 |={10100 |- 2

5 x(z),xt) ~| 01110 ©10100 | =|11010 | =3

e(10)=10101 is the code worde X =10100.

. The maximum likelihood decoding function d associated with e is
defined by d(x; )=10.

[ 01 11
|1 0 1]
Example :Let H=| ¢ 0 0 | be a parity check matrix. decode the
010
0 01
following words relative to a maximum likelihood decoding function

associated with ey : (i) 10100, (ii) 01101, (iii) 11011.

Solution : The code words are e(00)=00000, e(01)=00101, e(10)=10011,

e(11)=11110. Then N={00000,00101,10011,11110}. We implement
the decoding procedure as follows. Determine all left cosets of N in B5,



as rows of a table. For each row 1, locate the coset leader ¢;, and rewrite
the row in the order.

£, & @
Example : Consider the (2,4)  encoding function e as follows. How
many errors will e detect?

e(00) = 0000, e(01) =0110, e(10) =1011, e(11)=1100

Solution :
S 0000 0110 1011 1100
0000 0110 1011 1100
0110 1101 1010
1011 --- 0111
1100

etween distinct pairsof e=2 . k+1=2

e:B? > B® defined" e(10) =10101,.6(11) = 11011 is a

group code.

Solution : Group Code

@ 00000 01110 10101 11011
00000 00000 01110 10101 11011
01110 01110 00000 11011 10101
10101 10101 11011 00000 01110
11011 11011 10101 01110 00000

Since closure property is satisfied, it is a group code.

Example : Define group code. show that (2, 5) encoding function

e:B> »B® defined by e(00)=00000, e(01)=01110, e(10)=10101,



e(ll) =11011 is a group code. Consider this group code and decode the

following words relative to maximum likelihood decoding function.
(a) 11110 (b) 10011.
Solution : Group Code

@ 00000 01110 10101 11011
00000 00000 01110 10101 11011
01110 01110 00000 11011 10101
10101 10101 11011 00000 01110
11011 11011 10101 01110 00000

Since closure property is satisfied, it is a group code.

Now, let x = 00000, x(? = 02110, x®) =10101, x*) =11011.

@) x =11110

=] 00000 ©11110 |=|11110 |=4

- Maximum likelihood decoding function d(x;)=01.

(b) X =10011

S(X(l),xt) - ‘ W@ x ‘: 00000 ®10011 |= 10011 |= 3

S(X(Z) xt)= x1?) @ % |=|01110 ®10011 |= [11101 |= 4
S(X(S),xt)= x®) @ x| =|10101®10011 |=| 00110 | =2
6(x(4) xt): X @ x ‘=|11011@10011 |=]01000 |=1

- Maximum likelihood decoding function d(x, )=11.



(10 0]
011
Example : Let H=|1 11 be a parity check matrix. Determine
100
010
L0 0 1]
the (3,6) group code ey -B° - BS.

Solution : B® ={000, 001, 010, 011,100,101,110,111}

e, (000) = 000000 ey (001) = 001111 ey (010) = 010011
ey (011) = 011100 e (100) = 100100 ey (101) =101011
ey (120)=110111 e (111)=111000

Required group code = {000000, 001111,010011,011100,100100,
101011,110111,111000}

that (2,5) defined

encoding function e:B, — Bs

by is a

group

Test wh

e(00)= 00000,

Solution :

® 00000 01110 10101 11011

00000 00000 01110 10101 11011
01110 01110 00000 11011 10101
10101 10101 11011 00000 01110
11011 11011 10101 01110 00000

Since closure property is satisfied, it is a group code.

Example : Show that the (3,7) encoding function e:B° — B’

defined by
e(000) = 0000000 e (001) = 0010110 e (010) = 0101000



e(Oll) =0111110 e (100) =1000101 e (101) =1010011
e(110) =1101101 e(111)=1111011 is a group code.

Solution :

@ 0000000 0010110 0101000 0111110 1000101 1010011 1101101 1111011

0000000 J 0000000 0010110 0101000 0111110 1000101 1010011 1101101 1111011
0010110 J 0010110 0000000 0111110 0101000 1010011 1000101 1111011 1101101

0101000 0101000 0111110 0000000 0010110 1101101 1111011 1000101 1010011
0111110 J0111110 0101000 0010110 0000000 1111011 1101101 1010011 1000101
1000101 | 1000101 1010011 1101101 1111011 0000000 0010110 0101000 0111110
1010011 | 1010011 1000101 1111011 1101101 0010110 0000000 0111110 0101100
1101101 J 1101101 1111011 1000101 1010011 0101000 0111110 0000000 0010110

1111011 j1111011 0000000

Since closure property is satisfied, it is a group code.

Example: Consider the (3,8) encoding function e:B® B

-
e(001)=10111000

____-ué"('flrg) = 00011100

e(100) =10100100
10) = 00101101

9(011) =10010
How many errors W

Solution :

&) 00000000 10100100 10111000 10001001 00101101 00011100 10010101 00110001

0000000 00000000 10100100 10111000 10001001 00101101 00011100 10010101 00110001
10100100 {10100100 00000000 00011100 00101101 10001001 10111000 00110001 10010101
10111000 00000000 00011100 00000000 001100001 10010101 10100100 00101101 10001001
10001001 §10001001 00101101 00110001 00000000 10100100 10010101 00011100 10111000
00101101 |00101101 10001001 10010101 10100100 00000000 00110001 10111000 00011100
00011100 {00011100 10111000 10100100 10010101 00110001 00000000 10001001 00101101
10010101 {10010101 00110001 00101101 00011100 10111000 10001001 00000000 10100100
00110001 |00110001 10010101 10001001 10111000 00011100 00101101 10100100 0000000

Minimum distance between pairs of e = 3.
~k+1=3 ... k=2 ..The encoding function e can detect 2 or fewer
errors.



Example: Consider parity check matrix H given by

0
1
0
0
1

1

0
H=| 1
0

O o F K

0

. Determine the group code ey :B, — Bs. Decode the

foIIoning words relative to a maximum likelihood decoding function
associated with ey : 01110, 11101, 00001, 11000 . [Apr-04, May-07]

Solution : By = {00, 01,10,11}
ey (00) = 00x X, X3 where ¥ =0.1+0.0=0

X, =0.1+01=0
x3=00+01=0 .. ey (00)=00000

ey (01) = 01X Xy X3 where X =0.4+1.0=0

eH (11) = 11X1X2 X3

X =01+11=1
X3=00+1.1=1 ~.ey (01) = 01011

X, =1.1+01=1
0+ 0.1=

x3=10+11=1 . ¢, (01)=11101

. Desired group code = {00000, 01011, 10110, 11101}

(1) %, =01110

S(X(l),xt): ‘ @ x, ‘: 00000 ® 01110 |= | 01110 | =3

S(X(Z) xt)—
ES(X(3),Xt
8(x(4) xt)—

)= x(3)69xt

X @ x ‘ =(11101@ 01110 |=|10011 |=3

X2 @ x ‘: /0101101110 |=|00101 |= 2

=[10110® 01110 |= [11000 |=2

- Maximum likelihood decoding function d(x;)=01



(2) % =11101

S(X(l), xt) = x(l) D X

=|00000 ©11101 |= |11101 |- 4

S(X(Z) xt)= x?) @ x, |=|01110 ©11101 |= 10110 |=3
a(x(3),xt)= x®) @ x, ‘=|10101@11101|=|o1o11|=3
8(x(4) xt)= ) @ x, |=|11011®11101 |= |00000 |=0

.. Maximum likelihood decoding function d(x,) =11

(3) % =00001

S(X(l),xt) =[x @ x, |=|00000 ® 00001 |= [00001 |=1

x?) @ x, |=|01011® 00001 |=|01010 |=2

8(x(3),xt) - ‘ X @ x ‘=|10110 ®00001 |=/10111 |= 4

=|11101® 00001 |=|11100 |=3

od decoding function d(x;)=00

x(z)eaxt =

=1xX® @ x, |=[10101®11000 |=| 01101 |=3

5 x(4),xt)= x*) @ % |=[11011®11000 |= 10000 |=1





